These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29848801)

  • 1. Dimensional and compositional change of 1D chalcogen nanostructures leading to tunable localized surface plasmon resonances.
    Min Y; Seo HJ; Choi JJ; Hahn BD; Moon GD
    Nanotechnology; 2018 Aug; 29(34):345603. PubMed ID: 29848801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct soft-chemical synthesis of chalcogen-doped manganese oxide 1D nanostructures: influence of chalcogen doping on electrode performance.
    Kim TW; Park DH; Lim ST; Hwang SJ; Min BK; Choy JH
    Small; 2008 Apr; 4(4):507-14. PubMed ID: 18383575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex templating process in one-dimensional nanoscale: controllable synthesis, macroscopic assemblies, and applications.
    Liang HW; Liu JW; Qian HS; Yu SH
    Acc Chem Res; 2013 Jul; 46(7):1450-61. PubMed ID: 23441891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods.
    Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ
    Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise.
    Ginzburg P; Zayats AV
    ACS Nano; 2013 May; 7(5):4334-42. PubMed ID: 23570309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized plasmon resonances of bimetallic AgAuAg nanorods.
    Ahn SH; Kim DS; Seo D; Choi W; Yi GR; Song H; Park QH; Kim ZH
    Phys Chem Chem Phys; 2013 Mar; 15(12):4190-4. PubMed ID: 23247539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Solution Synthesis of Transition Metal Dichalcogenide Alloys with Tunable Optical Properties.
    Sun Y; Fujisawa K; Lin Z; Lei Y; Mondschein JS; Terrones M; Schaak RE
    J Am Chem Soc; 2017 Aug; 139(32):11096-11105. PubMed ID: 28766944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances.
    Huang J; Zhu Y; Liu C; Zhao Y; Liu Z; Hedhili MN; Fratalocchi A; Han Y
    Small; 2015 Oct; 11(39):5214-21. PubMed ID: 26270384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine's assistance.
    Xiong S; Xi B; Wang C; Zou G; Fei L; Wang W; Qian Y
    Chemistry; 2007; 13(11):3076-81. PubMed ID: 17212364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances.
    Cheng H; Wen M; Ma X; Kuwahara Y; Mori K; Dai Y; Huang B; Yamashita H
    J Am Chem Soc; 2016 Jul; 138(29):9316-24. PubMed ID: 27384437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional hybrid nanostructures: synthesis via layer-by-layer assembly and applications.
    Du N; Zhang H; Yang D
    Nanoscale; 2012 Sep; 4(18):5517-26. PubMed ID: 22858648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability.
    Bai Y; Gao C; Yin Y
    Nanoscale; 2017 Oct; 9(39):14875-14880. PubMed ID: 28975172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide-Based Assemblies for Green Synthesis of Silver Nanoparticles with Controlled Localized Surface Plasmon Resonances and Their Applications.
    Pu F; Huang Y; Yang Z; Qiu H; Ren J
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9929-9937. PubMed ID: 29494122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes.
    Falk AL; Chiu KC; Farmer DB; Cao Q; Tersoff J; Lee YH; Avouris P; Han SJ
    Phys Rev Lett; 2017 Jun; 118(25):257401. PubMed ID: 28696746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances.
    Guo T; Tan Y
    Nanoscale; 2013 Jan; 5(2):561-9. PubMed ID: 23149628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reshaping nanocrystals for tunable plasmonic substrates.
    Kim M; Lee YW; Kim D; Lee S; Ryoo SR; Min DH; Lee SB; Han SW
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):5038-43. PubMed ID: 22877421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical properties and plasmon resonances of titanium nitride nanostructures.
    Cortie MB; Giddings J; Dowd A
    Nanotechnology; 2010 Mar; 21(11):115201. PubMed ID: 20173237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.