These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29848834)

  • 1. Beta-adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression.
    Zhao Y; Li W
    Asian J Androl; 2019; 21(3):253-259. PubMed ID: 29848834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1.
    Hulsurkar M; Li Z; Zhang Y; Li X; Zheng D; Li W
    Oncogene; 2017 Mar; 36(11):1525-1536. PubMed ID: 27641328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking inflammation and neuroendocrine differentiation: the role of macrophage migration inhibitory factor-mediated signaling in prostate cancer.
    Savoy RM; Ghosh PM
    Endocr Relat Cancer; 2013 Jun; 20(3):C1-4. PubMed ID: 23612613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroendocrine differentiation in the progression of prostate cancer.
    Komiya A; Suzuki H; Imamoto T; Kamiya N; Nihei N; Naya Y; Ichikawa T; Fuse H
    Int J Urol; 2009 Jan; 16(1):37-44. PubMed ID: 19120524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Adrenergic Receptor Signaling in Prostate Cancer.
    Braadland PR; Ramberg H; Grytli HH; Taskén KA
    Front Oncol; 2014; 4():375. PubMed ID: 25629002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression.
    Littlepage LE; Sternlicht MD; Rougier N; Phillips J; Gallo E; Yu Y; Williams K; Brenot A; Gordon JI; Werb Z
    Cancer Res; 2010 Mar; 70(6):2224-34. PubMed ID: 20215503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/β-catenin signaling in prostate cancer cells.
    Ciarlo M; Benelli R; Barbieri O; Minghelli S; Barboro P; Balbi C; Ferrari N
    Int J Cancer; 2012 Aug; 131(3):582-90. PubMed ID: 22015967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognostic significance of neuroendocrine differentiation in prostate adenocarcinoma.
    Sagnak L; Topaloglu H; Ozok U; Ersoy H
    Clin Genitourin Cancer; 2011 Dec; 9(2):73-80. PubMed ID: 22035833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanism of invasion and metastasis of prostate cancer: over view].
    Kanayama H
    Nihon Rinsho; 2016 May; 74 Suppl 3():129-34. PubMed ID: 27344716
    [No Abstract]   [Full Text] [Related]  

  • 10. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells.
    Labrecque MP; Takhar MK; Nason R; Santacruz S; Tam KJ; Massah S; Haegert A; Bell RH; Altamirano-Dimas M; Collins CC; Lee FJ; Prefontaine GG; Cox ME; Beischlag TV
    Oncotarget; 2016 Apr; 7(17):24284-302. PubMed ID: 27015368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroendocrine differentiation in prostate cancer: novel morphological insights and future therapeutic perspectives.
    Santoni M; Conti A; Burattini L; Berardi R; Scarpelli M; Cheng L; Lopez-Beltran A; Cascinu S; Montironi R
    Biochim Biophys Acta; 2014 Dec; 1846(2):630-7. PubMed ID: 25450825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer.
    Dong B; Miao J; Wang Y; Luo W; Ji Z; Lai H; Zhang M; Cheng X; Wang J; Fang Y; Zhu HH; Chua CW; Fan L; Zhu Y; Pan J; Wang J; Xue W; Gao WQ
    Commun Biol; 2020 Dec; 3(1):778. PubMed ID: 33328604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neuropeptide 26RFa is expressed in human prostate cancer and stimulates the neuroendocrine differentiation and the migration of androgeno-independent prostate cancer cells.
    Alonzeau J; Alexandre D; Jeandel L; Courel M; Hautot C; El Yamani FZ; Gobet F; Leprince J; Magoul R; Amarti A; Pfister C; Yon L; Anouar Y; Chartrel N
    Eur J Cancer; 2013 Jan; 49(2):511-9. PubMed ID: 22863147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor.
    Merkle D; Hoffmann R
    Cell Signal; 2011 Mar; 23(3):507-15. PubMed ID: 20813184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-Related Signaling Pathways in Lethal and Nonlethal Prostate Cancer.
    Lu D; Sinnott JA; Valdimarsdóttir U; Fang F; Gerke T; Tyekucheva S; Fiorentino M; Lambe M; Sesso HD; Sweeney CJ; Wilson KM; Giovannucci EL; Loda M; Mucci LA; Fall K
    Clin Cancer Res; 2016 Feb; 22(3):765-772. PubMed ID: 26490316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FOXA1 inhibits prostate cancer neuroendocrine differentiation.
    Kim J; Jin H; Zhao JC; Yang YA; Li Y; Yang X; Dong X; Yu J
    Oncogene; 2017 Jul; 36(28):4072-4080. PubMed ID: 28319070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyk2 and Cyr61 at the cross-road of cAMP-dependent signalling in invasiveness and neuroendocrine differentiation of prostate cancer.
    Vitale G; Gentilini D; Abbruzzese A; Caraglia M
    Cancer Biol Ther; 2009 Feb; 8(3):243-4. PubMed ID: 19182531
    [No Abstract]   [Full Text] [Related]  

  • 18. Neuroendocrine transdifferentiation of prostate carcinoma cells and its prognostic significance.
    Marcu M; Radu E; Sajin M
    Rom J Morphol Embryol; 2010; 51(1):7-12. PubMed ID: 20191113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Neuroendocrine differentiation in prostate cancer].
    Wu CY; Na YQ; Yao JL; di Sant'Agnese PA; Huang JT
    Zhonghua Bing Li Xue Za Zhi; 2006 Sep; 35(9):565-7. PubMed ID: 17134555
    [No Abstract]   [Full Text] [Related]  

  • 20. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer.
    Adhami VM; Siddiqui IA; Ahmad N; Gupta S; Mukhtar H
    Cancer Res; 2004 Dec; 64(23):8715-22. PubMed ID: 15574782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.