These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2984907)

  • 21. Composite energy deposition kernels for focused point monodirectional photon beams.
    Eklöf A; Brahme A
    Phys Med Biol; 1999 Jul; 44(7):1655-68. PubMed ID: 10442703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dose calculations in proton beams: range straggling corrections and energy scaling.
    Russell KR; Grusell E; Montelius A
    Phys Med Biol; 1995 Jun; 40(6):1031-43. PubMed ID: 7659728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging.
    Jabbari K; Sarfehnia A; Podgorsak EB; Seuntjens JP
    Phys Med Biol; 2007 Feb; 52(4):1171-84. PubMed ID: 17264378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental evaluation of a spatial resampling technique to improve the accuracy of pencil-beam dose calculation in proton therapy.
    Egashira Y; Nishio T; Matsuura T; Kameoka S; Uesaka M
    Med Phys; 2012 Jul; 39(7):4104-14. PubMed ID: 22830743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhomogeneity corrections in electron-beam dose planning. Limitations with the semi-infinite slab approximation.
    Lax I
    Phys Med Biol; 1986 Aug; 31(8):879-92. PubMed ID: 3763698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm.
    Ding GX; Cygler JE; Yu CW; Kalach NI; Daskalov G
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):622-33. PubMed ID: 16168854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The FE-lspd model for electron beam dosimetry.
    Werner BL; Cho PS; Pfund J
    Phys Med Biol; 1998 Feb; 43(2):291-311. PubMed ID: 9509527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Method to increase efficiency of irradiation of biological objects by electron beams].
    Varzar' SM; Zenin VV; Tultaev AV; Cherniaev AP
    Radiats Biol Radioecol; 2002; 42(2):216-22. PubMed ID: 12004622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A beam source model for scanned proton beams.
    Kimstrand P; Traneus E; Ahnesjö A; Grusell E; Glimelius B; Tilly N
    Phys Med Biol; 2007 Jun; 52(11):3151-68. PubMed ID: 17505095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Monte Carlo investigation of fluence profiles collimated by an electron specific MLC during beam delivery for modulated electron radiation therapy.
    Deng J; Lee MC; Ma CM
    Med Phys; 2002 Nov; 29(11):2472-83. PubMed ID: 12462711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The energy-dependent electron loss model: backscattering and application to heterogeneous slab media.
    Lee TK; Sandison GA
    Phys Med Biol; 2003 Jan; 48(2):259-73. PubMed ID: 12587908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry.
    Fernández-Varea JM; Andreo P; Tabata T
    Phys Med Biol; 1996 Jul; 41(7):1119-39. PubMed ID: 8822780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.
    Bazalova-Carter M; Liu M; Palma B; Dunning M; McCormick D; Hemsing E; Nelson J; Jobe K; Colby E; Koong AC; Tantawi S; Dolgashev V; Maxim PG; Loo BW
    Med Phys; 2015 Apr; 42(4):1606-13. PubMed ID: 25832051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of angular spread on the intensity distribution of arbitrarily shaped electron beams.
    Mohan R; Chui CS; Fontenla D; Han K; Ballon D
    Med Phys; 1988; 15(2):204-10. PubMed ID: 3386590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of initial electron beam characteristics on monte carlo calculated absorbed dose distributions for linear accelerator electron beams.
    Björk P; Knöös T; Nilsson P
    Phys Med Biol; 2002 Nov; 47(22):4019-41. PubMed ID: 12476980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion recombination correction for very high dose-per-pulse high-energy electron beams.
    Di Martino F; Giannelli M; Traino AC; Lazzeri M
    Med Phys; 2005 Jul; 32(7):2204-10. PubMed ID: 16121574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of phantom and treatment head generated bremsstrahlung in high-energy electron beam dosimetry.
    Sorcini BB; Hyödynmaa S; Brahme A
    Phys Med Biol; 1996 Dec; 41(12):2657-77. PubMed ID: 8971976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.