These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29849145)

  • 1. Pairwise and higher-order genetic interactions during the evolution of a tRNA.
    Domingo J; Diss G; Lehner B
    Nature; 2018 Jun; 558(7708):117-121. PubMed ID: 29849145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
    Kryazhimskiy S; Rice DP; Jerison ER; Desai MM
    Science; 2014 Jun; 344(6191):1519-1522. PubMed ID: 24970088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The consistency of beneficial fitness effects of mutations across diverse genetic backgrounds.
    Pearson VM; Miller CR; Rokyta DR
    PLoS One; 2012; 7(8):e43864. PubMed ID: 22937113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular epistasis and the compensatory evolution of gene deletion mutants.
    Rojas Echenique JI; Kryazhimskiy S; Nguyen Ba AN; Desai MM
    PLoS Genet; 2019 Feb; 15(2):e1007958. PubMed ID: 30768593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative Epistasis in Experimental RNA Fitness Landscapes.
    Bendixsen DP; Østman B; Hayden EJ
    J Mol Evol; 2017 Dec; 85(5-6):159-168. PubMed ID: 29127445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-environment fitness landscapes of a tRNA gene.
    Li C; Zhang J
    Nat Ecol Evol; 2018 Jun; 2(6):1025-1032. PubMed ID: 29686238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast.
    Jasmin JN; Lenormand T
    Genetics; 2016 Feb; 202(2):751-63. PubMed ID: 26596348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic survey of an intragenic epistatic landscape.
    Bank C; Hietpas RT; Jensen JD; Bolon DN
    Mol Biol Evol; 2015 Jan; 32(1):229-38. PubMed ID: 25371431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Should evolutionary geneticists worry about higher-order epistasis?
    Weinreich DM; Lan Y; Wylie CS; Heckendorn RB
    Curr Opin Genet Dev; 2013 Dec; 23(6):700-7. PubMed ID: 24290990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fitness landscape of a tRNA gene.
    Li C; Qian W; Maclean CJ; Zhang J
    Science; 2016 May; 352(6287):837-40. PubMed ID: 27080104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pervasive epistasis exposes intramolecular networks in adaptive enzyme evolution.
    Buda K; Miton CM; Tokuriki N
    Nat Commun; 2023 Dec; 14(1):8508. PubMed ID: 38129396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network of epistatic interactions within a yeast snoRNA.
    Puchta O; Cseke B; Czaja H; Tollervey D; Sanguinetti G; Kudla G
    Science; 2016 May; 352(6287):840-4. PubMed ID: 27080103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-fitness yeast genotypes are less robust to deleterious mutations.
    Johnson MS; Martsul A; Kryazhimskiy S; Desai MM
    Science; 2019 Oct; 366(6464):490-493. PubMed ID: 31649199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pervasive Pairwise Intragenic Epistasis among Sequential Mutations in TEM-1 β-Lactamase.
    Gonzalez CE; Ostermeier M
    J Mol Biol; 2019 May; 431(10):1981-1992. PubMed ID: 30922874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fitness epistasis among 6 biosynthetic loci in the budding yeast Saccharomyces cerevisiae.
    Hall DW; Agan M; Pope SC
    J Hered; 2010; 101 Suppl 1():S75-84. PubMed ID: 20194517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of epistasis on simple fitness landscapes.
    Fraïsse C; Welch JJ
    Biol Lett; 2019 Apr; 15(4):20180881. PubMed ID: 31014191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories.
    Weinreich DM; Watson RA; Chao L
    Evolution; 2005 Jun; 59(6):1165-74. PubMed ID: 16050094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of epistatic interactions and fitness landscapes using a new geometric approach.
    Beerenwinkel N; Pachter L; Sturmfels B; Elena SF; Lenski RE
    BMC Evol Biol; 2007 Apr; 7():60. PubMed ID: 17433106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genomic landscape of compensatory evolution.
    Szamecz B; Boross G; Kalapis D; Kovács K; Fekete G; Farkas Z; Lázár V; Hrtyan M; Kemmeren P; Groot Koerkamp MJ; Rutkai E; Holstege FC; Papp B; Pál C
    PLoS Biol; 2014 Aug; 12(8):e1001935. PubMed ID: 25157590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape.
    Pokusaeva VO; Usmanova DR; Putintseva EV; Espinar L; Sarkisyan KS; Mishin AS; Bogatyreva NS; Ivankov DN; Akopyan AV; Avvakumov SY; Povolotskaya IS; Filion GJ; Carey LB; Kondrashov FA
    PLoS Genet; 2019 Apr; 15(4):e1008079. PubMed ID: 30969963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.