These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 29849549)
1. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game. Leite HMA; de Carvalho SN; Costa TBDS; Attux R; Hornung HH; Arantes DS Comput Intell Neurosci; 2018; 2018():4920132. PubMed ID: 29849549 [TBL] [Abstract][Full Text] [Related]
2. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
3. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential. Brumberg JS; Nguyen A; Pitt KM; Lorenz SD Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839 [TBL] [Abstract][Full Text] [Related]
4. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI? Volosyak I; Valbuena D; Lüth T; Malechka T; Gräser A IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):232-9. PubMed ID: 21421448 [TBL] [Abstract][Full Text] [Related]
5. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. Lee MH; Williamson J; Lee YE; Lee SW Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642 [TBL] [Abstract][Full Text] [Related]
6. SSVEP-based Bremen-BCI interface--boosting information transfer rates. Volosyak I J Neural Eng; 2011 Jun; 8(3):036020. PubMed ID: 21555847 [TBL] [Abstract][Full Text] [Related]
7. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies. Hwang HJ; Han CH; Lim JH; Kim YW; Choi SI; An KO; Lee JH; Cha HS; Hyun Kim S; Im CH Psychophysiology; 2017 Mar; 54(3):444-451. PubMed ID: 27914171 [TBL] [Abstract][Full Text] [Related]
8. A Prototype SSVEP Based Real Time BCI Gaming System. Martišius I; Damaševičius R Comput Intell Neurosci; 2016; 2016():3861425. PubMed ID: 27051414 [TBL] [Abstract][Full Text] [Related]
9. Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface. Zhang Y; Xu P; Cheng K; Yao D J Neurosci Methods; 2014 Jan; 221():32-40. PubMed ID: 23928153 [TBL] [Abstract][Full Text] [Related]
10. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Punsawad Y; Wongsawat Y Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060 [TBL] [Abstract][Full Text] [Related]
11. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses. Baek HJ; Kim HS; Heo J; Lim YG; Park KS J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913 [TBL] [Abstract][Full Text] [Related]
12. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. Brunner C; Allison BZ; Altstätter C; Neuper C J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538 [TBL] [Abstract][Full Text] [Related]
13. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface. Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894 [TBL] [Abstract][Full Text] [Related]
14. Plug&Play Brain-Computer Interfaces for effective Active and Assisted Living control. Mora N; De Munari I; Ciampolini P; Del R Millán J Med Biol Eng Comput; 2017 Aug; 55(8):1339-1352. PubMed ID: 27858227 [TBL] [Abstract][Full Text] [Related]
15. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D; Huang B; Wu W; Li S Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229 [TBL] [Abstract][Full Text] [Related]
16. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming. Beveridge R; Wilson S; Coyle D Prog Brain Res; 2016; 228():329-53. PubMed ID: 27590974 [TBL] [Abstract][Full Text] [Related]
17. Toward a hybrid brain-computer interface based on imagined movement and visual attention. Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550 [TBL] [Abstract][Full Text] [Related]
18. A review of brain-computer interface games and an opinion survey from researchers, developers and users. Ahn M; Lee M; Choi J; Jun SC Sensors (Basel); 2014 Aug; 14(8):14601-33. PubMed ID: 25116904 [TBL] [Abstract][Full Text] [Related]
19. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces. Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679 [TBL] [Abstract][Full Text] [Related]
20. Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game. Son JE; Choi H; Lim H; Ku J Technol Health Care; 2020; 28(S1):509-519. PubMed ID: 32364183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]