BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29849558)

  • 1. Specific Influences of Early Acoustic Environments on Cochlear Hair Cells in Postnatal Mice.
    Chang A; Chen P; Guo S; Xu N; Pan W; Zhang H; Li C; Tang J
    Neural Plast; 2018; 2018():5616930. PubMed ID: 29849558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mild Maternal Iron Deficiency Anemia Induces Hearing Impairment Associated with Reduction of Ribbon Synapse Density and Dysregulation of VGLUT3, Myosin VIIa, and Prestin Expression in Young Guinea Pigs.
    Yu F; Hao S; Yang B; Zhao Y; Zhang W; Yang J
    Neurotox Res; 2016 May; 29(4):594-604. PubMed ID: 26913517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outer hair cells in the mammalian cochlea and noise-induced hearing loss.
    Cody AR; Russell IJ
    Nature; 1985 Jun 20-26; 315(6021):662-5. PubMed ID: 4010777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term Conductive Auditory Deprivation During Early Development Causes Irreversible Hearing Impairment and Cochlear Synaptic Disruption.
    Qi Y; Yu S; Du Z; Qu T; He L; Xiong W; Wei W; Liu K; Gong S
    Neuroscience; 2019 May; 406():345-355. PubMed ID: 30742960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection.
    Canlon B
    Scand Audiol Suppl; 1988; 27():1-45. PubMed ID: 3043645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the acoustic startle response in rats and its change after early acoustic trauma.
    Rybalko N; Chumak T; Bureš Z; Popelář J; Šuta D; Syka J
    Behav Brain Res; 2015 Jun; 286():212-21. PubMed ID: 25746512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF22 protects hearing function from gentamycin ototoxicity by maintaining ribbon synapse number.
    Li S; Hang L; Ma Y
    Hear Res; 2016 Feb; 332():39-45. PubMed ID: 26639016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perinatal thiamine deficiency causes cochlear innervation abnormalities in mice.
    Maison SF; Yin Y; Liberman LD; Liberman MC
    Hear Res; 2016 May; 335():94-104. PubMed ID: 26944177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells.
    Tanaka C; Chen GD; Hu BH; Chi LH; Li M; Zheng G; Bielefeld EC; Jamesdaniel S; Coling D; Henderson D
    Hear Res; 2009 Apr; 250(1-2):10-8. PubMed ID: 19450428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin resistance due to dietary iron overload disrupts inner hair cell ribbon synapse plasticity in male mice.
    Yu F; Hao S; Yang B; Zhao Y; Zhang R; Zhang W; Yang J; Chen J
    Neurosci Lett; 2015 Jun; 597():183-8. PubMed ID: 25956034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.
    Barclay M; Constable R; James NR; Thorne PR; Montgomery JM
    Neuroscience; 2016 Jun; 325():50-62. PubMed ID: 27012610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and Functional Evaluation of Ribbon Synapses at Specific Frequency Regions of the Mouse Cochlea.
    Yu SK; Du ZD; Song QL; Qu TF; Qi Y; Xiong W; He L; Wei W; Gong SS; Liu K
    J Vis Exp; 2019 May; (147):. PubMed ID: 31132058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent regulation of prestin expression in mouse outer hair cells.
    Song Y; Xia A; Lee HY; Wang R; Ricci AJ; Oghalai JS
    J Neurophysiol; 2015 Jun; 113(10):3531-42. PubMed ID: 25810486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hearing threshold elevation precedes hair-cell loss in prestin knockout mice.
    Wu X; Gao J; Guo Y; Zuo J
    Brain Res Mol Brain Res; 2004 Jul; 126(1):30-7. PubMed ID: 15207913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction in noise-induced functional loss of the cochleae in mice with pre-existing cochlear dysfunction due to genetic interference of prestin.
    Cai Q; Wang B; Coling D; Zuo J; Fang J; Yang S; Vera K; Hu BH
    PLoS One; 2014; 9(12):e113990. PubMed ID: 25486270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene.
    Geng R; Melki S; Chen DH; Tian G; Furness DN; Oshima-Takago T; Neef J; Moser T; Askew C; Horwitz G; Holt JR; Imanishi Y; Alagramam KN
    J Neurosci; 2012 Jul; 32(28):9485-98. PubMed ID: 22787034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximal number of pre-synaptic ribbons are formed in cochlear region corresponding to middle frequency in mice.
    Yang L; Chen D; Qu T; Ding T; Yan A; Gong P; Liu Y; Zhang J; Gong S; Yang S; Peng H; Liu K
    Acta Otolaryngol; 2018 Jan; 138(1):25-30. PubMed ID: 28949268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.