These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29849755)

  • 21. A miniaturized wall-climbing segment robot inspired by caterpillar locomotion.
    Han IH; Yi H; Song CW; Jeong HE; Lee SY
    Bioinspir Biomim; 2017 Jun; 12(4):046003. PubMed ID: 28492374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots.
    Ma Y; Xie S; Zhang Y
    Comput Biol Med; 2016 Mar; 70():88-98. PubMed ID: 26807802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of human walking patterns based on the parameter optimization of a passive dynamic walking robot.
    Zang X; Liu X; Zhu Y; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S849-58. PubMed ID: 27177111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of loading and size on maximum power output and gait characteristics in geckos.
    Irschick DJ; Vanhooydonck B; Herrel A; Andronescu A
    J Exp Biol; 2003 Nov; 206(Pt 22):3923-34. PubMed ID: 14555734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot.
    Moro FL; Spröwitz A; Tuleu A; Vespignani M; Tsagarakis NG; Ijspeert AJ; Caldwell DG
    Biol Cybern; 2013 Jun; 107(3):309-20. PubMed ID: 23463501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy comparison between trot, bound, and gallop using a simple model.
    Nanua P; Waldron KJ
    J Biomech Eng; 1995 Nov; 117(4):466-73. PubMed ID: 8748530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hierarchical approach for rigid-body dynamics model simplification of a high-speed parallel robot by considering kinematics performance.
    Ni J; Mei J; Hu W
    Sci Prog; 2021 Oct; 104(4):368504211063072. PubMed ID: 34903104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.
    Calisti M; Corucci F; Arienti A; Laschi C
    Bioinspir Biomim; 2015 Jul; 10(4):046012. PubMed ID: 26226238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
    Owaki D; Ishiguro A
    Sci Rep; 2017 Mar; 7(1):277. PubMed ID: 28325917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and analysis of a meso-hydraulic climbing robot with artificial muscle actuation.
    Chapman EM; Jenkins TE; Bryant M
    Bioinspir Biomim; 2017 Nov; 12(6):066010. PubMed ID: 28691919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an 8DOF quadruped robot and implementation of Inverse Kinematics using Denavit-Hartenberg convention.
    Atique MMU; Sarker MRI; Ahad MAR
    Heliyon; 2018 Dec; 4(12):e01053. PubMed ID: 30582058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gecko-Inspired Dry Adhesive Based on Micro-Nanoscale Hierarchical Arrays for Application in Climbing Devices.
    Raut HK; Baji A; Hariri HH; Parveen H; Soh GS; Low HY; Wood KL
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1288-1296. PubMed ID: 29214798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research on the Stationarity of Hexapod Robot Posture Adjustment.
    Zhang L; Wang F; Gao Z; Gao S; Li C
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shear adhesion strength of thermoplastic gecko-inspired synthetic adhesive exceeds material limits.
    Gillies AG; Fearing RS
    Langmuir; 2011 Sep; 27(18):11278-81. PubMed ID: 21848321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research on Kinematics and Stability of a Bionic Wall-Climbing Hexapod Robot.
    Xu S; He B; Hu H
    Appl Bionics Biomech; 2019; 2019():6146214. PubMed ID: 31065293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates.
    Wang Z; Dai Z; Ji A; Ren L; Xing Q; Dai L
    Bioinspir Biomim; 2015 Feb; 10(1):016019. PubMed ID: 25650374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.