BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 29849907)

  • 1. Cigarette Smoke-Induced Acquired Dysfunction of Cystic Fibrosis Transmembrane Conductance Regulator in the Pathogenesis of Chronic Obstructive Pulmonary Disease.
    Shi J; Li H; Yuan C; Luo M; Wei J; Liu X
    Oxid Med Cell Longev; 2018; 2018():6567578. PubMed ID: 29849907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic Fibrosis Transmembrane Conductance Regulator. Implications in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease.
    Cantin AM
    Ann Am Thorac Soc; 2016 Apr; 13 Suppl 2():S150-5. PubMed ID: 27115950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmentation of S-Nitrosoglutathione Controls Cigarette Smoke-Induced Inflammatory-Oxidative Stress and Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis by Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function.
    Bodas M; Silverberg D; Walworth K; Brucia K; Vij N
    Antioxid Redox Signal; 2017 Sep; 27(7):433-451. PubMed ID: 28006950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke.
    Raju SV; Lin VY; Liu L; McNicholas CM; Karki S; Sloane PA; Tang L; Jackson PL; Wang W; Wilson L; Macon KJ; Mazur M; Kappes JC; DeLucas LJ; Barnes S; Kirk K; Tearney GJ; Rowe SM
    Am J Respir Cell Mol Biol; 2017 Jan; 56(1):99-108. PubMed ID: 27585394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease.
    Fernandez Fernandez E; De Santi C; De Rose V; Greene CM
    Expert Rev Respir Med; 2018 Jun; 12(6):483-492. PubMed ID: 29750581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cigarette smoke and CFTR: implications in the pathogenesis of COPD.
    Rab A; Rowe SM; Raju SV; Bebok Z; Matalon S; Collawn JF
    Am J Physiol Lung Cell Mol Physiol; 2013 Oct; 305(8):L530-41. PubMed ID: 23934925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Chronic Bronchitis and Other Diseases of Mucus Clearance.
    Raju SV; Solomon GM; Dransfield MT; Rowe SM
    Clin Chest Med; 2016 Mar; 37(1):147-58. PubMed ID: 26857776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a novel CFTR potentiator in COPD ferrets with acquired CFTR dysfunction.
    Kaza N; Lin VY; Stanford D; Hussain SS; Falk Libby E; Kim H; Borgonovi M; Conrath K; Mutyam V; Byzek SA; Tang LP; Trombley JE; Rasmussen L; Schoeb T; Leung HM; Tearney GJ; Raju SV; Rowe SM
    Eur Respir J; 2022 Jul; 60(1):. PubMed ID: 34916262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential systemic effects of acquired CFTR dysfunction in COPD.
    Miravitlles M; Criner GJ; Mall MA; Rowe SM; Vogelmeier CF; Hederer B; Schoenberger M; Altman P
    Respir Med; 2024 Jan; 221():107499. PubMed ID: 38104786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roflumilast partially reverses smoke-induced mucociliary dysfunction.
    Schmid A; Baumlin N; Ivonnet P; Dennis JS; Campos M; Krick S; Salathe M
    Respir Res; 2015 Oct; 16():135. PubMed ID: 26521141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lentivirus-mediated CFTR overexpression on oxidative stress injury and inflammatory response in the lung tissue of COPD mouse model.
    Xu X; Huang H; Yin X; Fang H; Shen X
    Biosci Rep; 2020 Jan; 40(1):. PubMed ID: 31894837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease.
    Sloane PA; Shastry S; Wilhelm A; Courville C; Tang LP; Backer K; Levin E; Raju SV; Li Y; Mazur M; Byan-Parker S; Grizzle W; Sorscher EJ; Dransfield MT; Rowe SM
    PLoS One; 2012; 7(6):e39809. PubMed ID: 22768130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis.
    Lambert JA; Raju SV; Tang LP; McNicholas CM; Li Y; Courville CA; Farris RF; Coricor GE; Smoot LH; Mazur MM; Dransfield MT; Bolger GB; Rowe SM
    Am J Respir Cell Mol Biol; 2014 Mar; 50(3):549-58. PubMed ID: 24106801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic obstructive pulmonary disease and the modulation of CFTR by acute exposure to cigarette smoke.
    Hanrahan JW; Abu-Arish A; Wong FH; Turner MJ; Carlile GW; Thomas DY; Cantin AM
    Am J Physiol Cell Physiol; 2022 Nov; 323(5):C1374-C1392. PubMed ID: 36121129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction.
    Rasmussen JE; Sheridan JT; Polk W; Davies CM; Tarran R
    J Biol Chem; 2014 Mar; 289(11):7671-81. PubMed ID: 24448802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-based rescue of dysfunctional autophagy in chronic obstructive lung diseases.
    Vij N
    Expert Opin Drug Deliv; 2017 Apr; 14(4):483-489. PubMed ID: 27561233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function.
    Raju SV; Jackson PL; Courville CA; McNicholas CM; Sloane PA; Sabbatini G; Tidwell S; Tang LP; Liu B; Fortenberry JA; Jones CW; Boydston JA; Clancy JP; Bowen LE; Accurso FJ; Blalock JE; Dransfield MT; Rowe SM
    Am J Respir Crit Care Med; 2013 Dec; 188(11):1321-30. PubMed ID: 24040746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD.
    Dransfield MT; Wilhelm AM; Flanagan B; Courville C; Tidwell SL; Raju SV; Gaggar A; Steele C; Tang LP; Liu B; Rowe SM
    Chest; 2013 Aug; 144(2):498-506. PubMed ID: 23538783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of heterozygote CFTR mutations in COPD patients with chronic bronchitis.
    Raju SV; Tate JH; Peacock SK; Fang P; Oster RA; Dransfield MT; Rowe SM
    Respir Res; 2014 Feb; 15(1):18. PubMed ID: 24517344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-acetyl cysteine reverts the proinflammatory state induced by cigarette smoke extract in lung Calu-3 cells.
    Valdivieso ÁG; Dugour AV; Sotomayor V; Clauzure M; Figueroa JM; Santa-Coloma TA
    Redox Biol; 2018 Jun; 16():294-302. PubMed ID: 29573703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.