BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 29849912)

  • 1. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions.
    Li L; Yang X
    Oxid Med Cell Longev; 2018; 2018():7580707. PubMed ID: 29849912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese superoxide dismutase: guardian of the powerhouse.
    Holley AK; Bakthavatchalu V; Velez-Roman JM; St Clair DK
    Int J Mol Sci; 2011; 12(10):7114-62. PubMed ID: 22072939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quercetin Attenuates Manganese-Induced Neuroinflammation by Alleviating Oxidative Stress through Regulation of Apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways.
    Bahar E; Kim JY; Yoon H
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28914791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstructive Sleep Apnea Syndrome and Metabolic Diseases.
    Li M; Li X; Lu Y
    Endocrinology; 2018 Jul; 159(7):2670-2675. PubMed ID: 29788220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link?
    Asrih M; Jornayvaz FR
    Mol Cell Endocrinol; 2015 Dec; 418 Pt 1():55-65. PubMed ID: 25724480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Stress as a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis.
    Spahis S; Delvin E; Borys JM; Levy E
    Antioxid Redox Signal; 2017 Apr; 26(10):519-541. PubMed ID: 27452109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial superoxide mediates labile iron level: evidence from Mn-SOD-transgenic mice and heterozygous knockout mice and isolated rat liver mitochondria.
    Ibrahim WH; Habib HM; Kamal H; St Clair DK; Chow CK
    Free Radic Biol Med; 2013 Dec; 65():143-149. PubMed ID: 23792772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical biology for medicine: learning from nonalcoholic fatty liver disease.
    Serviddio G; Bellanti F; Vendemiale G
    Free Radic Biol Med; 2013 Dec; 65():952-968. PubMed ID: 23994574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance.
    Kakimoto PA; Kowaltowski AJ
    Redox Biol; 2016 Aug; 8():216-25. PubMed ID: 26826574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary Manganese Modulates PCB126 Toxicity, Metal Status, and MnSOD in the Rat.
    Wang B; Klaren WD; Wels BR; Simmons DL; Olivier AK; Wang K; Robertson LW; Ludewig G
    Toxicol Sci; 2016 Mar; 150(1):15-26. PubMed ID: 26660635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer.
    Hou C; Wang Y; Zhu E; Yan C; Zhao L; Wang X; Qiu Y; Shen H; Sun X; Feng Z; Liu J; Long J
    Biochem Pharmacol; 2016 Mar; 103():85-97. PubMed ID: 26774456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Janus Head of Oxidative Stress in Metabolic Diseases and During Physical Exercise.
    Pesta D; Roden M
    Curr Diab Rep; 2017 Jun; 17(6):41. PubMed ID: 28439848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies.
    Sunny NE; Bril F; Cusi K
    Trends Endocrinol Metab; 2017 Apr; 28(4):250-260. PubMed ID: 27986466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease.
    Chen Z; Tian R; She Z; Cai J; Li H
    Free Radic Biol Med; 2020 May; 152():116-141. PubMed ID: 32156524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Alcoholic Fatty Liver Disease.
    Engin A
    Adv Exp Med Biol; 2017; 960():443-467. PubMed ID: 28585211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats.
    Ortiz-Avila O; Gallegos-Corona MA; Sánchez-Briones LA; Calderón-Cortés E; Montoya-Pérez R; Rodriguez-Orozco AR; Campos-García J; Saavedra-Molina A; Mejía-Zepeda R; Cortés-Rojo C
    J Bioenerg Biomembr; 2015 Aug; 47(4):337-53. PubMed ID: 26060181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased plasma manganese, partially reduced ascorbate, 1 and absence of mitochondrial oxidative stress in type 2 diabetes mellitus: implications for the superoxide uncoupling protein 2 (UCP-2) pathway.
    Anetor JI; Asiribo OA; Adedapo KS; Akingbola TS; Olorunnisola OS; Adeniyi FA
    Biol Trace Elem Res; 2007; 120(1-3):19-27. PubMed ID: 17916951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making progress in nonalcoholic fatty liver disease (NAFLD) as we are transitioning from the era of NAFLD to dys-metabolism associated fatty liver disease (DAFLD).
    Polyzos SA; Mantzoros CS
    Metabolism; 2020 Oct; 111S():154318. PubMed ID: 32707055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial effects of silibinin against the progression of metabolic syndrome, increased oxidative stress, and liver steatosis in Psammomys obesus, a relevant animal model of human obesity and diabetes.
    Bouderba S; Sanchez-Martin C; Villanueva GR; Detaille D; Koceïr EA
    J Diabetes; 2014 Mar; 6(2):184-92. PubMed ID: 23953934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese superoxide dismutase and oxidative stress modulation.
    Bresciani G; da Cruz IB; González-Gallego J
    Adv Clin Chem; 2015; 68():87-130. PubMed ID: 25858870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.