BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29850004)

  • 21. Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: A single-blinded, randomized, controlled trial.
    Lee MJ; Lee JH; Lee SM
    Technol Health Care; 2018; 26(4):659-666. PubMed ID: 30124459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
    Veerbeek JM; Langbroek-Amersfoort AC; van Wegen EE; Meskers CG; Kwakkel G
    Neurorehabil Neural Repair; 2017 Feb; 31(2):107-121. PubMed ID: 27597165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients.
    Franceschini M; Goffredo M; Pournajaf S; Paravati S; Agosti M; De Pisi F; Galafate D; Posteraro F
    PLoS One; 2018; 13(2):e0193235. PubMed ID: 29466440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity.
    Lee DJ; Bae SJ; Jang SH; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.
    Riani A; Madani T; Hadri AE; Benallegue A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():695-701. PubMed ID: 28813901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study.
    Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C
    Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation.
    Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a Planar Haptic Robot With Minimized Impedance.
    Oh K; Rymer WZ; Plenzio I; Mussa-Ivaldi FA; Park S; Choi J
    IEEE Trans Biomed Eng; 2021 May; 68(5):1441-1449. PubMed ID: 33206599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can robot-based measurements improve prediction of motor performance after robot-assisted upper-limb rehabilitation in patients with moderate-to-severe sub-acute stroke?
    Duret C; Pila O; Grosmaire AG; Koeppel T
    Restor Neurol Neurosci; 2019; 37(2):119-129. PubMed ID: 30909254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation.
    Koo D; Chang PH; Sohn MK; Shin JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975505. PubMed ID: 22275701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke.
    Cho KH; Song WK
    Tohoku J Exp Med; 2015 Oct; 237(2):149-55. PubMed ID: 26460793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym.
    Bustamante Valles K; Montes S; Madrigal Mde J; Burciaga A; Martínez ME; Johnson MJ
    J Neuroeng Rehabil; 2016 Sep; 13(1):83. PubMed ID: 27634471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
    Cao W; Zhang F; Yu H; Hu B; Meng Q
    Technol Health Care; 2018; 26(3):409-420. PubMed ID: 29400683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upper-Limb Rehabilitation of Patients with Neuromotor Deficits Using Impedance-Based Control of a 6-DOF Robot.
    Behidj A; Achiche S; Mohebbi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer.
    Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A
    ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: a preliminary prospective cohort study.
    Gilliaux M; Lejeune T; Detrembleur C; Sapin J; Dehez B; Stoquart G
    J Rehabil Med; 2012 Mar; 44(3):210-7. PubMed ID: 22367455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.