These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29850463)

  • 21. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes.
    Shen J; Lv L; Wang X; Xiu Z; Chen G
    J Basic Microbiol; 2017 Apr; 57(4):325-336. PubMed ID: 28156004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization and evolution of Salmonella CRISPR-Cas systems.
    Shariat N; Timme RE; Pettengill JB; Barrangou R; Dudley EG
    Microbiology (Reading); 2015 Feb; 161(Pt 2):374-86. PubMed ID: 25479838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pruning and Tending Immune Memories: Spacer Dynamics in the CRISPR Array.
    Garrett SC
    Front Microbiol; 2021; 12():664299. PubMed ID: 33868219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity.
    Faure G; Makarova KS; Koonin EV
    J Mol Biol; 2019 Jan; 431(1):3-20. PubMed ID: 30193985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs in the Porphyromonas gingivalis CRISPR-Cas I-C System.
    Burmistrz M; Rodriguez Martinez JI; Krochmal D; Staniec D; Pyrc K
    J Bacteriol; 2017 Dec; 199(23):. PubMed ID: 28893837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers.
    Zhang Z; Pan S; Liu T; Li Y; Peng N
    J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30936372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescent CRISPR Adaptation Reporter for rapid quantification of spacer acquisition.
    Amlinger L; Hoekzema M; Wagner EGH; Koskiniemi S; Lundgren M
    Sci Rep; 2017 Sep; 7(1):10392. PubMed ID: 28871175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short motif sequences determine the targets of the prokaryotic CRISPR defence system.
    Mojica FJM; Díez-Villaseñor C; García-Martínez J; Almendros C
    Microbiology (Reading); 2009 Mar; 155(Pt 3):733-740. PubMed ID: 19246744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria.
    Dy RL; Pitman AR; Fineran PC
    Mob Genet Elements; 2013 Sep; 3(5):e26831. PubMed ID: 24251073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.
    Al-Attar S; Westra ER; van der Oost J; Brouns SJ
    Biol Chem; 2011 Apr; 392(4):277-89. PubMed ID: 21294681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal number of spacers in CRISPR arrays.
    Martynov A; Severinov K; Ispolatov I
    PLoS Comput Biol; 2017 Dec; 13(12):e1005891. PubMed ID: 29253874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange.
    Lopatina A; Medvedeva S; Artamonova D; Kolesnik M; Sitnik V; Ispolatov Y; Severinov K
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180092. PubMed ID: 30905291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR adaptation in Escherichia coli subtypeI-E system.
    Kiro R; Goren MG; Yosef I; Qimron U
    Biochem Soc Trans; 2013 Dec; 41(6):1412-5. PubMed ID: 24256229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers.
    Pourcel C; Touchon M; Villeriot N; Vernadet JP; Couvin D; Toffano-Nioche C; Vergnaud G
    Nucleic Acids Res; 2020 Jan; 48(D1):D535-D544. PubMed ID: 31624845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of CRISPR-Cas systems in virulence of pathogenic bacteria.
    Louwen R; Staals RH; Endtz HP; van Baarlen P; van der Oost J
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):74-88. PubMed ID: 24600041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome Mining Approach Reveals the Occurrence and Diversity Pattern of Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Systems in
    Panahi B; Majidi M; Hejazi MA
    Front Microbiol; 2022; 13():911706. PubMed ID: 35722276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinformatics analyses of Shigella CRISPR structure and spacer classification.
    Wang P; Zhang B; Duan G; Wang Y; Hong L; Wang L; Guo X; Xi Y; Yang H
    World J Microbiol Biotechnol; 2016 Mar; 32(3):38. PubMed ID: 26867599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cas System: The Powerful Modulator of Accessory Genomes in Prokaryotes.
    Butiuc-Keul A; Farkas A; Carpa R; Iordache D
    Microb Physiol; 2022; 32(1-2):2-17. PubMed ID: 34192695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.
    Heler R; Wright AV; Vucelja M; Bikard D; Doudna JA; Marraffini LA
    Mol Cell; 2017 Jan; 65(1):168-175. PubMed ID: 28017588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.