These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 29850513)
1. Genetic Performance of the Semidwarfing Allele Tomita M; Ishii K Biomed Res Int; 2018; 2018():4241725. PubMed ID: 29850513 [TBL] [Abstract][Full Text] [Related]
3. Combining two semidwarfing genes d60 and sd1 for reduced height in 'Minihikari', a new rice germplasm in the 'Koshihikari' genetic background. Tomita M Genet Res (Camb); 2012 Oct; 94(5):235-44. PubMed ID: 23298446 [TBL] [Abstract][Full Text] [Related]
4. Identification of Rice Large Grain Gene Tomita M; Yazawa S; Uenishi Y Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31683680 [TBL] [Abstract][Full Text] [Related]
5. Identification of an isogenic semidwarf rice cultivar carrying the Green Revolution sd1 gene by multiplex codominant ASP-PCR and SSR markers. Naito Y; Tomita M Biochem Genet; 2013 Aug; 51(7-8):530-42. PubMed ID: 23639970 [TBL] [Abstract][Full Text] [Related]
6. Year-round flowering gene e1, a mutation at the E1 locus on rice chromosome 7 and its combination with green revolution gene sd1 in an isogenic cell line. Tomita M; Obara Y Gene; 2022 Mar; 815():146166. PubMed ID: 34995737 [TBL] [Abstract][Full Text] [Related]
7. Differentiation in wild-type allele of the sd1 locus concerning culm length between indica and japonica subspecies of Oryza sativa (rice). Murai M; Nagano H; Onishi K; Ogino A; Ichikawa N; Kc HB; Sano Y Hereditas; 2011 Feb; 148(1):1-7. PubMed ID: 21410466 [TBL] [Abstract][Full Text] [Related]
8. Isogenic Japonica Rice Koshihikari Integrated with Late Flowering Gene Tomita M; Tokuyama R Life (Basel); 2022 Aug; 12(8):. PubMed ID: 36013416 [TBL] [Abstract][Full Text] [Related]
10. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. Yamamoto T; Nagasaki H; Yonemaru J; Ebana K; Nakajima M; Shibaya T; Yano M BMC Genomics; 2010 Apr; 11():267. PubMed ID: 20423466 [TBL] [Abstract][Full Text] [Related]
11. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice. Ookawa T; Aoba R; Yamamoto T; Ueda T; Takai T; Fukuoka S; Ando T; Adachi S; Matsuoka M; Ebitani T; Kato Y; Mulsanti IW; Kishii M; Reynolds M; Piñera F; Kotake T; Kawasaki S; Motobayashi T; Hirasawa T Sci Rep; 2016 Jul; 6():30572. PubMed ID: 27465821 [TBL] [Abstract][Full Text] [Related]
12. Identification and genetic analysis of qCL1.2, a novel allele of the "green revolution" gene SD1 from wild rice (Oryza rufipogon) that enhances plant height. Zhang L; Huang J; Wang Y; Xu R; Yang Z; Zhao Z; Liu S; Tian Y; Zheng X; Li F; Wang J; Song Y; Li J; Cui Y; Zhang LF; Cheng Y; Lan J; Qiao W; Yang Q BMC Genet; 2020 Jun; 21(1):62. PubMed ID: 32527215 [TBL] [Abstract][Full Text] [Related]
13. Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. Zhang L; Wang J; Wang J; Wang L; Ma B; Zeng L; Qi Y; Li Q; He Z Theor Appl Genet; 2015 Jun; 128(6):1151-61. PubMed ID: 25821195 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide DNA polymorphisms in seven rice cultivars of temperate and tropical japonica groups. Arai-Kichise Y; Shiwa Y; Ebana K; Shibata-Hatta M; Yoshikawa H; Yano M; Wakasa K PLoS One; 2014; 9(1):e86312. PubMed ID: 24466017 [TBL] [Abstract][Full Text] [Related]
15. SNP-based analysis of genetic diversity reveals important alleles associated with seed size in rice. Tang W; Wu T; Ye J; Sun J; Jiang Y; Yu J; Tang J; Chen G; Wang C; Wan J BMC Plant Biol; 2016 Apr; 16():93. PubMed ID: 27095382 [TBL] [Abstract][Full Text] [Related]
16. Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines. Takai T; Ikka T; Kondo K; Nonoue Y; Ono N; Arai-Sanoh Y; Yoshinaga S; Nakano H; Yano M; Kondo M; Yamamoto T BMC Plant Biol; 2014 Nov; 14():295. PubMed ID: 25404368 [TBL] [Abstract][Full Text] [Related]
17. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes. Liu W; Ghouri F; Yu H; Li X; Yu S; Shahid MQ; Liu X PLoS One; 2017; 12(7):e0180662. PubMed ID: 28700714 [TBL] [Abstract][Full Text] [Related]
18. Haplotype Characterization of the sd1 Semidwarf Gene in United States Rice. Angira B; Addison CK; Cerioli T; Rebong DB; Wang DR; Pumplin N; Ham JH; Oard JH; Linscombe SD; Famoso AN Plant Genome; 2019 Nov; 12(3):1-9. PubMed ID: 33016579 [TBL] [Abstract][Full Text] [Related]
19. Control of grain protein contents through SEMIDWARF1 mutant alleles: sd1 increases the grain protein content in Dee-geo-woo-gen but not in Reimei. Terao T; Hirose T Mol Genet Genomics; 2015 Jun; 290(3):939-54. PubMed ID: 25492221 [TBL] [Abstract][Full Text] [Related]
20. Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. Huang J; Li J; Zhou J; Wang L; Yang S; Hurst LD; Li WH; Tian D Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7559-E7567. PubMed ID: 30037991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]