These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 2985082)
1. Why is a specific amino acid sequence of F glycoprotein required for the membrane fusion reaction between envelope of HVJ (Sendai virus) and target cell membranes? Asano K; Asano A Biochem Int; 1985 Jan; 10(1):115-22. PubMed ID: 2985082 [TBL] [Abstract][Full Text] [Related]
2. Role of paramyxovirus glycoproteins in the interactions between viral and cell membranes. Scheid A; Hsu M; Choppin PW Soc Gen Physiol Ser; 1980; 34():119-30. PubMed ID: 7384831 [TBL] [Abstract][Full Text] [Related]
3. Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction. Asano K; Asano A Biochemistry; 1988 Feb; 27(4):1321-9. PubMed ID: 2835090 [TBL] [Abstract][Full Text] [Related]
4. Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site. Rodríguez-Crespo I; Núñez E; Yélamos B; Gómez-Gutiérrez J; Albar JP; Peterson DL; Gavilanes F Virology; 1999 Aug; 261(1):133-42. PubMed ID: 10441561 [TBL] [Abstract][Full Text] [Related]
6. Membrane fusion activity of Semliki Forest virus in a liposomal model system: specific inhibition by Zn2+ ions. Corver J; Bron R; Snippe H; Kraaijeveld C; Wilschut J Virology; 1997 Nov; 238(1):14-21. PubMed ID: 9375004 [TBL] [Abstract][Full Text] [Related]
7. Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Yao Q; Compans RW Virology; 1996 Sep; 223(1):103-12. PubMed ID: 8806544 [TBL] [Abstract][Full Text] [Related]
8. Assessment of membrane fusion efficiency and its use for distinguishing epitopes on the fusion (F) protein of Sendai virus (HVJ). Miura N; Soe G; Uchida T; Okada Y Biochem Biophys Res Commun; 1993 Aug; 194(3):1051-7. PubMed ID: 7688959 [TBL] [Abstract][Full Text] [Related]
9. Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. Pritsker M; Rucker J; Hoffman TL; Doms RW; Shai Y Biochemistry; 1999 Aug; 38(35):11359-71. PubMed ID: 10471286 [TBL] [Abstract][Full Text] [Related]
10. Regions on the hemagglutinin-neuraminidase proteins of human parainfluenza virus type-1 and Sendai virus important for membrane fusion. Bousse T; Takimoto T; Gorman WL; Takahashi T; Portner A Virology; 1994 Nov; 204(2):506-14. PubMed ID: 7941317 [TBL] [Abstract][Full Text] [Related]
11. Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Bossart KN; Wang LF; Eaton BT; Broder CC Virology; 2001 Nov; 290(1):121-35. PubMed ID: 11882997 [TBL] [Abstract][Full Text] [Related]
12. Direct evidence that the N-terminal heptad repeat of Sendai virus fusion protein participates in membrane fusion. Ghosh JK; Shai Y J Mol Biol; 1999 Sep; 292(3):531-46. PubMed ID: 10497019 [TBL] [Abstract][Full Text] [Related]
13. A heptad repeat in herpes simplex virus 1 gH, located downstream of the alpha-helix with attributes of a fusion peptide, is critical for virus entry and fusion. Gianni T; Menotti L; Campadelli-Fiume G J Virol; 2005 Jun; 79(11):7042-9. PubMed ID: 15890943 [TBL] [Abstract][Full Text] [Related]
14. The identification and characterization of fusogenic domains in herpes virus glycoprotein B molecules. Galdiero S; Vitiello M; D'Isanto M; Falanga A; Cantisani M; Browne H; Pedone C; Galdiero M Chembiochem; 2008 Mar; 9(5):758-67. PubMed ID: 18311743 [TBL] [Abstract][Full Text] [Related]
15. The membrane-active regions of the hepatitis C virus E1 and E2 envelope glycoproteins. Pérez-Berna AJ; Moreno MR; Guillén J; Bernabeu A; Villalaín J Biochemistry; 2006 Mar; 45(11):3755-68. PubMed ID: 16533059 [TBL] [Abstract][Full Text] [Related]
16. Role of the fusion peptide and membrane-proximal domain in HIV-1 envelope glycoprotein-mediated membrane fusion. Dimitrov AS; Rawat SS; Jiang S; Blumenthal R Biochemistry; 2003 Dec; 42(48):14150-8. PubMed ID: 14640682 [TBL] [Abstract][Full Text] [Related]
17. Fusion of Madin-Darby canine kidney cells by HVJ (Sendai virus): absence of direct association of virus particles with the site of membrane fusion. Kim J; Adachi T; Yoneda Y; Okada Y Eur J Cell Biol; 1990 Feb; 51(1):128-34. PubMed ID: 2158447 [TBL] [Abstract][Full Text] [Related]
18. Fusion of Sendai virus with model membranes as affected by dehydrating agents and pH: correlation between viral envelope hydrophobicity and fusion activity. Ramalho-Santos J; Negrão R; de Lima MC Biochem Mol Biol Int; 1994 Apr; 32(6):1121-7. PubMed ID: 8061629 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides. Kelsey DR; Flanagan TD; Young JE; Yeagle PL Virology; 1991 Jun; 182(2):690-702. PubMed ID: 1850923 [TBL] [Abstract][Full Text] [Related]
20. Peptides as potential virus inhibitors. Synthesis and bioassay of five respiratory syncytial virus peptide analogs with antimeasles activity. Lobl TJ; Renis HE; Epand RM; Maggiora LL; Wathen MW Int J Pept Protein Res; 1988 Nov; 32(5):326-30. PubMed ID: 2850279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]