BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29850860)

  • 1. Pathway-structured predictive modeling for multi-level drug response in multiple myeloma.
    Zhang X; Li B; Han H; Song S; Xu H; Yi Z; Hong Y; Zhuang W; Yi N
    Bioinformatics; 2018 Nov; 34(21):3609-3615. PubMed ID: 29850860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.
    Zhang X; Li B; Han H; Song S; Xu H; Hong Y; Yi N; Zhuang W
    BMC Cancer; 2018 May; 18(1):551. PubMed ID: 29747599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BhGLM: Bayesian hierarchical GLMs and survival models, with applications to genomics and epidemiology.
    Yi N; Tang Z; Zhang X; Guo B
    Bioinformatics; 2019 Apr; 35(8):1419-1421. PubMed ID: 30219850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gsslasso Cox: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information.
    Tang Z; Lei S; Zhang X; Yi Z; Guo B; Chen JY; Shen Y; Yi N
    BMC Bioinformatics; 2019 Feb; 20(1):94. PubMed ID: 30813883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian compositional models for ordinal response.
    Zhang L; Zhang X; Leach JM; Rahman AF; Yi N
    Stat Methods Med Res; 2024 Jun; 33(6):1043-1054. PubMed ID: 38654396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature-weighted ordinal classification for predicting drug response in multiple myeloma.
    Ma Z; Ahn J
    Bioinformatics; 2021 Oct; 37(19):3270-3276. PubMed ID: 33974007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group spike-and-slab lasso generalized linear models for disease prediction and associated genes detection by incorporating pathway information.
    Tang Z; Shen Y; Li Y; Zhang X; Wen J; Qian C; Zhuang W; Shi X; Yi N
    Bioinformatics; 2018 Mar; 34(6):901-910. PubMed ID: 29077795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spike-and-slab lasso Cox model for survival prediction and associated genes detection.
    Tang Z; Shen Y; Zhang X; Yi N
    Bioinformatics; 2017 Sep; 33(18):2799-2807. PubMed ID: 28472220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.
    Tang Z; Shen Y; Zhang X; Yi N
    Genetics; 2017 Jan; 205(1):77-88. PubMed ID: 27799277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway-Structured Predictive Model for Cancer Survival Prediction: A Two-Stage Approach.
    Zhang X; Li Y; Akinyemiju T; Ojesina AI; Buckhaults P; Liu N; Xu B; Yi N
    Genetics; 2017 Jan; 205(1):89-100. PubMed ID: 28049703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logistic random effects regression models: a comparison of statistical packages for binary and ordinal outcomes.
    Li B; Lingsma HF; Steyerberg EW; Lesaffre E
    BMC Med Res Methodol; 2011 May; 11():77. PubMed ID: 21605357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative binomial mixed models for analyzing microbiome count data.
    Zhang X; Mallick H; Tang Z; Zhang L; Cui X; Benson AK; Yi N
    BMC Bioinformatics; 2017 Jan; 18(1):4. PubMed ID: 28049409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways.
    Ai C; Kong L
    J Genet Genomics; 2018 Sep; 45(9):489-504. PubMed ID: 30292791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian multitask learning for medicine recommendation based on online patient reviews.
    Cheng Y; Xia Y; Wang X
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37551956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical generalized linear models for multiple groups of rare and common variants: jointly estimating group and individual-variant effects.
    Yi N; Liu N; Zhi D; Li J
    PLoS Genet; 2011 Dec; 7(12):e1002382. PubMed ID: 22144906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning.
    Gönen M; Margolin AA
    Bioinformatics; 2014 Sep; 30(17):i556-63. PubMed ID: 25161247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian linear mixed model with multiple random effects for prediction analysis on high-dimensional multi-omics data.
    Hai Y; Ma J; Yang K; Wen Y
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37882747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian Approach to Multivariate Component-Based Logistic Regression: Analyzing Correlated Multivariate Ordinal Data.
    Park JH; Choi JY; Lee J; Kyung M
    Multivariate Behav Res; 2022; 57(4):543-560. PubMed ID: 33523709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.