BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29850860)

  • 21. BAGSE: a Bayesian hierarchical model approach for gene set enrichment analysis.
    Hukku A; Quick C; Luca F; Pique-Regi R; Wen X
    Bioinformatics; 2020 Mar; 36(6):1689-1695. PubMed ID: 31702789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling.
    Yu J; Silva J; Califano A
    Bioinformatics; 2016 Jan; 32(2):260-7. PubMed ID: 26415723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling monotonic effects of ordinal predictors in Bayesian regression models.
    Bürkner PC; Charpentier E
    Br J Math Stat Psychol; 2020 Nov; 73(3):420-451. PubMed ID: 31943157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer.
    Kim SY; Choe EK; Shivakumar M; Kim D; Sohn KA
    Bioinformatics; 2021 Aug; 37(16):2405-2413. PubMed ID: 33543748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering.
    Ahmad A; Fröhlich H
    Bioinformatics; 2017 Nov; 33(22):3558-3566. PubMed ID: 28961917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian semi-nonnegative matrix tri-factorization to identify pathways associated with cancer phenotypes.
    Park S; Kar N; Cheong JH; Hwang TH
    Pac Symp Biocomput; 2020; 25():427-438. PubMed ID: 31797616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-kernel linear mixed model with adaptive lasso for prediction analysis on high-dimensional multi-omics data.
    Li J; Lu Q; Wen Y
    Bioinformatics; 2020 Mar; 36(6):1785-1794. PubMed ID: 31693075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.
    Montesinos-López OA; Montesinos-López A; Crossa J; Burgueño J; Eskridge K
    G3 (Bethesda); 2015 Aug; 5(10):2113-26. PubMed ID: 26290569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GameRank: R package for feature selection and construction.
    Henneges C; Paulson JN
    Bioinformatics; 2022 Oct; 38(20):4840-4842. PubMed ID: 35951761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical shrinkage priors and model fitting for high-dimensional generalized linear models.
    Yi N; Ma S
    Stat Appl Genet Mol Biol; 2012 Nov; 11(6):. PubMed ID: 23192052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis.
    Huo Y; de la Torre J; Mun EY; Kim SY; Ray AE; Jiao Y; White HR
    Psychometrika; 2015 Sep; 80(3):834-55. PubMed ID: 25265910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incremental sparse Bayesian ordinal regression.
    Li C; de Rijke M
    Neural Netw; 2018 Oct; 106():294-302. PubMed ID: 30121479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data.
    St-Pierre J; Oualkacha K; Bhatnagar SR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36708013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple network-constrained regressions expand insights into influenza vaccination responses.
    Avey S; Mohanty S; Wilson J; Zapata H; Joshi SR; Siconolfi B; Tsang S; Shaw AC; Kleinstein SH
    Bioinformatics; 2017 Jul; 33(14):i208-i216. PubMed ID: 28881994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A two-stage approach for combining gene expression and mutation with clinical data improves survival prediction in myelodysplastic syndromes and ovarian cancer.
    Li Y; Zhang X; Akinyemiju T; Ojesina AI; Szychowski JM; Liu N; Xu B; Yi N
    J Bioinform Genom; 2016 Sep; 1(1):. PubMed ID: 34377946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model.
    Xie J; Ji T; Ferreira MAR; Li Y; Patel BN; Rivera RM
    BMC Bioinformatics; 2019 Oct; 20(1):530. PubMed ID: 31660858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.