These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 29850877)
1. Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion Artifact Denoising. Nielsen AN; Greene DJ; Gratton C; Dosenbach NUF; Petersen SE; Schlaggar BL Cereb Cortex; 2019 Jun; 29(6):2455-2469. PubMed ID: 29850877 [TBL] [Abstract][Full Text] [Related]
2. Global signal regression strengthens association between resting-state functional connectivity and behavior. Li J; Kong R; Liégeois R; Orban C; Tan Y; Sun N; Holmes AJ; Sabuncu MR; Ge T; Yeo BTT Neuroimage; 2019 Aug; 196():126-141. PubMed ID: 30974241 [TBL] [Abstract][Full Text] [Related]
3. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001 [TBL] [Abstract][Full Text] [Related]
4. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Lanka P; Deshpande G Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966 [TBL] [Abstract][Full Text] [Related]
5. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
6. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Power JD; Mitra A; Laumann TO; Snyder AZ; Schlaggar BL; Petersen SE Neuroimage; 2014 Jan; 84():320-41. PubMed ID: 23994314 [TBL] [Abstract][Full Text] [Related]
7. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353 [TBL] [Abstract][Full Text] [Related]
8. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults. Mowinckel AM; Espeseth T; Westlye LT Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492 [TBL] [Abstract][Full Text] [Related]
10. The impact of image smoothness on intrinsic functional connectivity and head motion confounds. Scheinost D; Papademetris X; Constable RT Neuroimage; 2014 Jul; 95():13-21. PubMed ID: 24657356 [TBL] [Abstract][Full Text] [Related]
11. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Satterthwaite TD; Elliott MA; Gerraty RT; Ruparel K; Loughead J; Calkins ME; Eickhoff SB; Hakonarson H; Gur RC; Gur RE; Wolf DH Neuroimage; 2013 Jan; 64():240-56. PubMed ID: 22926292 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project. Burgess GC; Kandala S; Nolan D; Laumann TO; Power JD; Adeyemo B; Harms MP; Petersen SE; Barch DM Brain Connect; 2016 Nov; 6(9):669-680. PubMed ID: 27571276 [TBL] [Abstract][Full Text] [Related]
14. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Hallquist MN; Hwang K; Luna B Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457 [TBL] [Abstract][Full Text] [Related]
15. Identifying reproducible individual differences in childhood functional brain networks: An ABCD study. Marek S; Tervo-Clemmens B; Nielsen AN; Wheelock MD; Miller RL; Laumann TO; Earl E; Foran WW; Cordova M; Doyle O; Perrone A; Miranda-Dominguez O; Feczko E; Sturgeon D; Graham A; Hermosillo R; Snider K; Galassi A; Nagel BJ; Ewing SWF; Eggebrecht AT; Garavan H; Dale AM; Greene DJ; Barch DM; Fair DA; Luna B; Dosenbach NUF Dev Cogn Neurosci; 2019 Dec; 40():100706. PubMed ID: 31614255 [TBL] [Abstract][Full Text] [Related]
16. Prediction of individual brain maturity using fMRI. Dosenbach NU; Nardos B; Cohen AL; Fair DA; Power JD; Church JA; Nelson SM; Wig GS; Vogel AC; Lessov-Schlaggar CN; Barnes KA; Dubis JW; Feczko E; Coalson RS; Pruett JR; Barch DM; Petersen SE; Schlaggar BL Science; 2010 Sep; 329(5997):1358-61. PubMed ID: 20829489 [TBL] [Abstract][Full Text] [Related]
17. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines. Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215 [TBL] [Abstract][Full Text] [Related]
18. Developmental sex differences in resting state functional connectivity of amygdala sub-regions. Alarcón G; Cservenka A; Rudolph MD; Fair DA; Nagel BJ Neuroimage; 2015 Jul; 115():235-44. PubMed ID: 25887261 [TBL] [Abstract][Full Text] [Related]
19. Normative development of ventral striatal resting state connectivity in humans. Fareri DS; Gabard-Durnam L; Goff B; Flannery J; Gee DG; Lumian DS; Caldera C; Tottenham N Neuroimage; 2015 Sep; 118():422-37. PubMed ID: 26087377 [TBL] [Abstract][Full Text] [Related]
20. The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. Baum GL; Roalf DR; Cook PA; Ciric R; Rosen AFG; Xia C; Elliott MA; Ruparel K; Verma R; Tunç B; Gur RC; Gur RE; Bassett DS; Satterthwaite TD Neuroimage; 2018 Jun; 173():275-286. PubMed ID: 29486323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]