These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29850941)

  • 1. Phase-contrast and three-dimensional driven equilibrium (3D-DRIVE) sequences in the assessment of paediatric obstructive hydrocephalus.
    Mohammad SA; Osman NM; Khalil RM
    Childs Nerv Syst; 2018 Nov; 34(11):2223-2231. PubMed ID: 29850941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Constructive Interference in Steady State Sequences and Phase-Contrast Magnetic Resonance Imaging of Arrested Hydrocephalus.
    Elkafrawy F; Reda I; Elsirafy M; Gawad MS; Elnaggar A; Khalek Abdel Razek AA
    World Neurosurg; 2017 Feb; 98():296-302. PubMed ID: 27826087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrocephalus Resulting from Late-Onset Aqueductal Membranous Occlusion: A Case Report and Review of the Literature.
    Terada Y; Yamamoto M; Motoie R; Matsui Y; Katsuki T; Mori N; Hashimoto K
    World Neurosurg; 2020 May; 137():345-349. PubMed ID: 32059969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus.
    Kim DS; Choi JU; Huh R; Yun PH; Kim DI
    Childs Nerv Syst; 1999 Sep; 15(9):461-7. PubMed ID: 10502007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of cerebrospinal fluid flow and volume in enlargement of the subarachnoid spaces of infancy using MRI.
    Ho CY; Sankar M; Persohn S; Kralik SF; Graner B; Territo PR
    Pediatr Radiol; 2023 Aug; 53(9):1919-1926. PubMed ID: 37100991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of CSF Flow with Time-resolved 3D MR Velocity Mapping in Aqueductal Stenosis Before and After Endoscopic Third Ventriculostomy : A Feasibility Study.
    Brandner S; Buchfelder M; Eyuepoglu IY; Luecking H; Doerfler A; Stadlbauer A
    Clin Neuroradiol; 2018 Mar; 28(1):69-74. PubMed ID: 27503094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Magnetic resonance three dimensional sampling perfection with application optimized contrasts using different flip angle evolution sequence for obstructive hydrocephalus: impact on diagnosis and surgical strategy modification].
    Song Z; Chen X; Tang Y; Yu X; Li S; Chen X; Peng J; Li F; Zhou D
    Zhonghua Wai Ke Za Zhi; 2015 Nov; 53(11):860-4. PubMed ID: 26813843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus.
    Hamilton RB; Scalzo F; Baldwin K; Dorn A; Vespa P; Hu X; Bergsneider M
    Fluids Barriers CNS; 2019 Jan; 16(1):2. PubMed ID: 30665428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperdynamic CSF motion profiles found in idiopathic normal pressure hydrocephalus and Alzheimer's disease assessed by fluid mechanics derived from magnetic resonance images.
    Takizawa K; Matsumae M; Hayashi N; Hirayama A; Yatsushiro S; Kuroda K
    Fluids Barriers CNS; 2017 Oct; 14(1):29. PubMed ID: 29047355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long lasting near-obstruction stenosis of mesencephalic aqueduct without development of hydrocephalus--case report.
    Radoš M; Orešković D; Radoš M; Jurjević I; Klarica M
    Croat Med J; 2014 Aug; 55(4):394-8. PubMed ID: 25165053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between ventricular morphology and aqueductal cerebrospinal fluid flow in healthy and communicating hydrocephalus.
    Chiang WW; Takoudis CG; Lee SH; Weis-McNulty A; Glick R; Alperin N
    Invest Radiol; 2009 Apr; 44(4):192-9. PubMed ID: 19300098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oscillatory flow of the cerebrospinal fluid in the Sylvian aqueduct and the prepontine cistern measured with phase contrast MRI in children with hydrocephalus-a preliminary report.
    Nowosławska E; Gwizdała D; Barańska D; Grzelak P; Podgórski M; Zakrzewski K; Polis B; Stasiołek M; Polis L
    Childs Nerv Syst; 2018 May; 34(5):845-851. PubMed ID: 29322338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Failure of third ventriculostomy in the treatment of aqueductal stenosis in children.
    Cinalli G; Sainte-Rose C; Chumas P; Zerah M; Brunelle F; Lot G; Pierre-Kahn A; Renier D
    J Neurosurg; 1999 Mar; 90(3):448-54. PubMed ID: 10067912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueductal flow of cerebrospinal fluid (CSF) and anatomical configuration of the cerebral aqueduct (AC) in patients with communicating hydrocephalus--the trumpet sign.
    McCoy MR; Klausner F; Weymayr F; Georg L; Broussalis E; Golaszewski SM; Emich S; Steinbacher J; Al-Shameri AR
    Eur J Radiol; 2013 Apr; 82(4):664-70. PubMed ID: 23318053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Predictor Role of the Aqueduct Cerebrospinal Fluid Flow on Endoscopic Third Ventriculostomy: Explication on Assumption Physical Model.
    Anik I; Anik Y; Cabuk B; Dana A; Gokbel A; Ozdamar D; Cirak M; Ceylan S
    Turk Neurosurg; 2018; 28(6):963-969. PubMed ID: 29634077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indications for neuroendoscopic aqueductoplasty without stenting for obstructive hydrocephalus due to aqueductal stenosis.
    Miki T; Nakajima N; Wada J; Haraoka J
    Minim Invasive Neurosurg; 2005 Jun; 48(3):136-41. PubMed ID: 16015489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic performance of heavily T2-weighted techniques in obstructive hydrocephalus: comparison study of two different 3D heavily T2-weighted and conventional T2-weighted sequences.
    Ucar M; Tokgoz N; Damar C; Alimli AG; Oncu F
    Jpn J Radiol; 2015 Feb; 33(2):94-101. PubMed ID: 25559932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Late-onset aqueductal membranous occlusion treated neuroendoscopic procedure and consideration of its pathological findings: A case report.
    Nakamura K; Kuge A; Yamaki T; Shimokawa Y; Tanaka M; Saito S; Kondo R; Sonoda Y
    Surg Neurol Int; 2023; 14():98. PubMed ID: 37025542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueductal Cerebrospinal Fluid Stroke Volume Flow in a Rodent Model of Chronic Communicating Hydrocephalus: Establishing a Homogeneous Study Population for Cerebrospinal Fluid Dynamics Exploration.
    Vivas-Buitrago T; Lokossou A; Jusué-Torres I; Pinilla-Monsalve G; Blitz AM; Herzka DA; Robison J; Xu J; Guerrero-Cazares H; Mori S; Quiñones-Hinojosa A; Baledént O; Rigamonti D
    World Neurosurg; 2019 Aug; 128():e1118-e1125. PubMed ID: 31121363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of aqueductal patency in patients with hydrocephalus: three-dimensional high-sampling-efficiency technique (SPACE) versus two-dimensional turbo spin echo at 3 Tesla.
    Ucar M; Guryildirim M; Tokgoz N; Kilic K; Borcek A; Oner Y; Akkan K; Tali T
    Korean J Radiol; 2014; 15(6):827-35. PubMed ID: 25469096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.