These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 29850960)

  • 1. Bacteria use a catabolic patchwork pathway of apparently recent origin for degradation of the synthetic buffer compound TRIS.
    Holert J; Borker A; Nübel LL; Daniel R; Poehlein A; Philipp B
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38365256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Characterization of Some Genes, Enzymes, and Metabolic Intermediates Belonging to the Bile Acid Aerobic Catabolic Pathway from Pseudomonas.
    Luengo JM; Olivera ER
    Methods Mol Biol; 2023; 2704():51-83. PubMed ID: 37642838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cytochrome P450 involved in the metabolism of abietane diterpenoids by Pseudomonas abietaniphila BKME-9.
    Smith DJ; Martin VJ; Mohn WW
    J Bacteriol; 2004 Jun; 186(11):3631-9. PubMed ID: 15150251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Gene
    Wang P; Xiao Y; Gao D; Long Y; Xie Z
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical properties of a Pseudomonas aminotransferase involved in caprolactam metabolism.
    Palacio CM; Rozeboom HJ; Lanfranchi E; Meng Q; Otzen M; Janssen DB
    FEBS J; 2019 Oct; 286(20):4086-4102. PubMed ID: 31162815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild hydrolysis of chemically stable valerolactams by a biocatalytic ATP-dependent system fueled by metaphosphate.
    Roth S; Gandomkar S; Rossi F; Hall M
    Green Chem; 2024 Apr; 26(8):4498-4505. PubMed ID: 38654979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metagenomic catalog for exploring the plastizymes landscape covering taxa, genes, and proteins.
    Jahanshahi DA; Ariaeenejad S; Kavousi K
    Sci Rep; 2023 Sep; 13(1):16029. PubMed ID: 37749380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating non-targeted analysis methods for chemical characterization of organic contaminants in different matrices to estimate children's exposure.
    Cui D; Cox J; Mejias E; Ng B; Gardinali P; Bagner DM; Quinete N
    J Expo Sci Environ Epidemiol; 2023 Jul; 33(4):589-601. PubMed ID: 37120701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a New
    Esikova TZ; Anokhina TO; Suzina NE; Shushkova TV; Wu Y; Solyanikova IP
    Microorganisms; 2023 Mar; 11(3):. PubMed ID: 36985223
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Esikova TZ; Akatova EV; Solyanikova IP
    Microorganisms; 2023 Feb; 11(2):. PubMed ID: 36838338
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantitative proteomic analysis of the microbial degradation of 3-aminobenzoic acid by Comamonas sp. QT12.
    Zhao S; Pan C; Zhao J; Du H; Li M; Yu H; Chen X
    Sci Rep; 2022 Oct; 12(1):17609. PubMed ID: 36266292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of the enzymes involved in the degradation of the herbicide molinate by Gulosibacter molinativorax ON4
    Lopes AR; Bunin E; Viana AT; Froufe H; Muñoz-Merida A; Pinho D; Figueiredo J; Barroso C; Vaz-Moreira I; Bellanger X; Egas C; Nunes OC
    Sci Rep; 2022 Sep; 12(1):15502. PubMed ID: 36109598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-Free Quantitative Proteomic Analysis of the Global Response to Indole-3-Acetic Acid in Newly Isolated
    Zhao S; Chen X; Sun Q; Wang F; Hu C; Guo L; Bai J; Yu H
    Front Microbiol; 2021; 12():694874. PubMed ID: 34447357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic and structural properties of ATP-dependent caprolactamase from Pseudomonas jessenii.
    Marjanovic A; Rozeboom HJ; de Vries MS; Mayer C; Otzen M; Wijma HJ; Janssen DB
    Proteins; 2021 Sep; 89(9):1079-1098. PubMed ID: 33826169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Omics-driven identification and elimination of valerolactam catabolism in
    Thompson MG; Valencia LE; Blake-Hedges JM; Cruz-Morales P; Velasquez AE; Pearson AN; Sermeno LN; Sharpless WA; Benites VT; Chen Y; Baidoo EEK; Petzold CJ; Deutschbauer AM; Keasling JD
    Metab Eng Commun; 2019 Dec; 9():e00098. PubMed ID: 31720214
    [No Abstract]   [Full Text] [Related]  

  • 16. An Arthrobacter citreus strain suitable for degrading ε-caprolactam in polyamide waste and accumulation of glutamic acid.
    Baxi NN; Patel S; Hansoti D
    AMB Express; 2019 Oct; 9(1):161. PubMed ID: 31605246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Sequence Analysis of Two Pseudomonas putida Strains to Identify a 17-Hydroxylase Putatively Involved in Sparteine Degradation.
    Detheridge AP; Griffith GW; Hopper DJ
    Curr Microbiol; 2018 Dec; 75(12):1649-1654. PubMed ID: 30267141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics.
    Otzen M; Palacio C; Janssen DB
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6699-6711. PubMed ID: 29850960
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.