BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29851002)

  • 21. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet.
    Francisco A; Ronchi JA; Navarro CDC; Figueira TR; Castilho RF
    J Neurochem; 2018 Dec; 147(5):663-677. PubMed ID: 30281804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox potentiometry in mitochondrial and photosynthetic bioenergetics.
    Dutton PL; Wilson DF
    Biochim Biophys Acta; 1974 Oct; 346(2):165-212. PubMed ID: 4154105
    [No Abstract]   [Full Text] [Related]  

  • 23. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA; Gu L; Di Domenico F; Robinson RA
    Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential reconstitution of mitochondrial respiratory chain activity and plasma redox state by cysteine and ornithine in a model of cancer cachexia.
    Ushmorov A; Hack V; Dröge W
    Cancer Res; 1999 Jul; 59(14):3527-34. PubMed ID: 10416620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement and meaning of cellular thiol:disufhide redox status.
    Comini MA
    Free Radic Res; 2016; 50(2):246-71. PubMed ID: 26695718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis.
    Cox AG; Pullar JM; Hughes G; Ledgerwood EC; Hampton MB
    Free Radic Biol Med; 2008 Mar; 44(6):1001-9. PubMed ID: 18164270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ubiquinone redox behavior in plant mitochondria during electron transport.
    Ribas-Carbo M; Wiskich JT; Berry JA; Siedow JN
    Arch Biochem Biophys; 1995 Feb; 317(1):156-60. PubMed ID: 7872778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial perspectives in the redox code-Mass spectrometric proteomics studies of moonlighting proteins.
    Pinto G; Radulovic M; Godovac-Zimmermann J
    Mass Spectrom Rev; 2018 Jan; 37(1):81-100. PubMed ID: 27186965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The multiple functions of coenzyme Q.
    Nohl H; Kozlov AV; Staniek K; Gille L
    Bioorg Chem; 2001 Feb; 29(1):1-13. PubMed ID: 11300690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans.
    Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F
    Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways.
    Van den Bergen CW; Wagner AM; Krab K; Moore AL
    Eur J Biochem; 1994 Dec; 226(3):1071-8. PubMed ID: 7813462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy.
    Cooper CE; Springett R
    Philos Trans R Soc Lond B Biol Sci; 1997 Jun; 352(1354):669-76. PubMed ID: 9232854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protective effects of N-acetyl-cysteine in mitochondria bioenergetics, oxidative stress, dynamics and S-glutathionylation alterations in acute kidney damage induced by folic acid.
    Aparicio-Trejo OE; Reyes-Fermín LM; Briones-Herrera A; Tapia E; León-Contreras JC; Hernández-Pando R; Sánchez-Lozada LG; Pedraza-Chaverri J
    Free Radic Biol Med; 2019 Jan; 130():379-396. PubMed ID: 30439416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying Functional Cysteine Residues in the Mitochondria.
    Bak DW; Pizzagalli MD; Weerapana E
    ACS Chem Biol; 2017 Apr; 12(4):947-957. PubMed ID: 28157297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line.
    Jonas CR; Ziegler TR; Gu LH; Jones DP
    Free Radic Biol Med; 2002 Dec; 33(11):1499-506. PubMed ID: 12446207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3).
    McDonagh B; Requejo R; Fuentes-Almagro CA; Ogueta S; Bárcena JA; Padilla CA
    J Proteomics; 2011 Oct; 74(11):2487-97. PubMed ID: 21565288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.