These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles. Foppa L; Copéret C; Comas-Vives A J Am Chem Soc; 2016 Dec; 138(51):16655-16668. PubMed ID: 27992204 [TBL] [Abstract][Full Text] [Related]
3. Mixed-metal cluster chemistry. 28. Core enlargement of tungsten-iridium clusters with alkynyl, ethyndiyl, and butadiyndiyl reagents. Dalton GT; Viau L; Waterman SM; Humphrey MG; Bruce MI; Low PJ; Roberts RL; Willis AC; Koutsantonis GA; Skelton BW; White AH Inorg Chem; 2005 May; 44(9):3261-9. PubMed ID: 15847435 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus chemical shift tensors of phosphido ligands in ruthenium carbonyl compounds: (31)P NMR spectroscopy of single-crystal and powder samples and ab initio calculations. Eichele K; Wasylishen RE; Corrigan JF; Taylor NJ; Carty AJ; Feindel KW; Bernard GM J Am Chem Soc; 2002 Feb; 124(7):1541-52. PubMed ID: 11841326 [TBL] [Abstract][Full Text] [Related]
5. Orbital Analysis of Carbon-13 Chemical Shift Tensors Reveals Patterns to Distinguish Fischer and Schrock Carbenes. Yamamoto K; Gordon CP; Liao WC; Copéret C; Raynaud C; Eisenstein O Angew Chem Int Ed Engl; 2017 Aug; 56(34):10127-10131. PubMed ID: 28590040 [TBL] [Abstract][Full Text] [Related]
6. A computational study of the CO dissociation in cyclopentadienyl ruthenium complexes relevant to the racemization of alcohols. Stewart B; Nyhlen J; Martín-Matute B; Bäckvall JE; Privalov T Dalton Trans; 2013 Jan; 42(4):927-34. PubMed ID: 23060073 [TBL] [Abstract][Full Text] [Related]
7. Novel rhodium and ruthenium carbonyl cluster complexes with face- and edge-bridging GaCp* ligands. Synthesis and structural characterization of the Rh6(CO)12(mu3-GaCp*)4 and Ru6(eta6-C)(mu2-CO)(CO)13(mu3-GaCp*)2(mu2-GaCp*) clusters. Grachova EV; Jutzi P; Neumann B; Stammler HG Dalton Trans; 2005 Nov; (22):3614-6. PubMed ID: 16258610 [TBL] [Abstract][Full Text] [Related]
8. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces. Hibbitts D; Iglesia E Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic understanding of N Reyes YIA; Yang KS; Thang HV; Coluccini C; Chen SY; Chen HT Faraday Discuss; 2023 Jul; 243(0):148-163. PubMed ID: 37057657 [TBL] [Abstract][Full Text] [Related]
10. CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts. Loveless BT; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2013 Apr; 135(16):6107-21. PubMed ID: 23480097 [TBL] [Abstract][Full Text] [Related]
11. IR spectra and structures of saturated ruthenium cluster carbonyl cations Ru Yubero Valdivielso D; Kerpal C; Schöllkopf W; Meijer G; Fielicke A Dalton Trans; 2023 Jul; 52(29):9929-9939. PubMed ID: 37431264 [TBL] [Abstract][Full Text] [Related]
12. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. De La Cruz C; Sheppard N Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107 [TBL] [Abstract][Full Text] [Related]
14. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides. del Rosal I; Maron L; Poteau R; Jolibois F Dalton Trans; 2008 Aug; (30):3959-70. PubMed ID: 18648699 [TBL] [Abstract][Full Text] [Related]
15. [2 + 2]-type Reaction of Metal-Metal σ-Bond with Fullerene Forming an η Zheng H; Zhao X; Sakaki S Inorg Chem; 2017 Jun; 56(11):6746-6754. PubMed ID: 28493717 [TBL] [Abstract][Full Text] [Related]
16. Hexaruthenium carbonyl cluster complexes with basal edge-bridged square pyramidal metallic skeleton: efficient synthesis of 2-imidopyridine derivatives and determination of their reactive sites in carbonyl substitution reactions. Cabeza JA; del Río I; García-Alvarez P; Miguel D; Riera V Inorg Chem; 2004 Aug; 43(17):5450-8. PubMed ID: 15310227 [TBL] [Abstract][Full Text] [Related]
17. Similarities and differences for atomic and diatomic molecule adsorption on the B-5 type sites of the HCP(101̅6) surfaces of Co, Os, and Ru from DFT calculations. Rankin RB Heliyon; 2019 Jun; 5(6):e01924. PubMed ID: 31508514 [TBL] [Abstract][Full Text] [Related]
18. Extreme metal carbonyl back bonding in cyclopentadienylthorium carbonyls generates bridging C2O2 ligands by carbonyl coupling. Li H; Feng H; Sun W; King RB; Schaefer HF Inorg Chem; 2013 Jun; 52(12):6893-904. PubMed ID: 23721544 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, reactivity studies, structural aspects, and solution behavior of half sandwich ruthenium(II) N,N',N''-triarylguanidinate complexes. Singh T; Kishan R; Nethaji M; Thirupathi N Inorg Chem; 2012 Jan; 51(1):157-69. PubMed ID: 22148465 [TBL] [Abstract][Full Text] [Related]
20. A combined theoretical/experimental study highlighting the formation of carbides on Ru nanoparticles during CO hydrogenation. Moraru IT; Martínez-Prieto LM; Coppel Y; Chaudret B; Cusinato L; Del Rosal I; Poteau R Nanoscale; 2021 Apr; 13(14):6902-6915. PubMed ID: 33885491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]