These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 29851475)
1. Thermoelectric Properties of Doped-Cu García G; Palacios P; Cabot A; Wahnón P Inorg Chem; 2018 Jun; 57(12):7321-7333. PubMed ID: 29851475 [TBL] [Abstract][Full Text] [Related]
2. Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu Zhang D; Yang J; Jiang Q; Zhou Z; Li X; Xin J; Basit A; Ren Y; He X; Chu W; Hou J ACS Appl Mater Interfaces; 2017 Aug; 9(34):28558-28565. PubMed ID: 28792200 [TBL] [Abstract][Full Text] [Related]
3. An impurity intermediate band due to Pb doping induced promising thermoelectric performance of Ca5In2Sb6. Feng Z; Wang Y; Yan Y; Zhang G; Yang J; Zhang J; Wang C Phys Chem Chem Phys; 2015 Jun; 17(23):15156-64. PubMed ID: 25991513 [TBL] [Abstract][Full Text] [Related]
4. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
5. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. Wang C; Wang Y; Zhang G; Peng C; Yang G Phys Chem Chem Phys; 2014 Feb; 16(8):3771-6. PubMed ID: 24430004 [TBL] [Abstract][Full Text] [Related]
6. Band Engineering Through Pb-Doping of Nanocrystal Building Blocks to Enhance Thermoelectric Performance in Cu Wan S; Xiao S; Li M; Wang X; Lim KH; Hong M; Ibáñez M; Cabot A; Liu Y Small Methods; 2024 Aug; 8(8):e2301377. PubMed ID: 38152986 [TBL] [Abstract][Full Text] [Related]
7. Electronic structure and low temperature thermoelectric properties of In₂₄M₈O₄₈ (M = Ge(4+), Sn(4+), Ti(4+), and Zr(4+)). Yan YL; Wang YX J Comput Chem; 2012 Jan; 33(1):88-92. PubMed ID: 21952977 [TBL] [Abstract][Full Text] [Related]
8. Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance. Li D; Li R; Qin XY; Song CJ; Xin HX; Wang L; Zhang J; Guo GL; Zou TH; Liu YF; Zhu XG Dalton Trans; 2014 Jan; 43(4):1888-96. PubMed ID: 24264386 [TBL] [Abstract][Full Text] [Related]
9. Bi and Sn Co-doping Enhanced Thermoelectric Properties of Cu Shen M; Lu S; Zhang Z; Liu H; Shen W; Fang C; Wang Q; Chen L; Zhang Y; Jia X ACS Appl Mater Interfaces; 2020 Feb; 12(7):8271-8279. PubMed ID: 31990526 [TBL] [Abstract][Full Text] [Related]
10. High thermoelectric performance of Cu Xie D; Zhang B; Zhang A; Chen Y; Yan Y; Yang H; Wang G; Wang G; Han X; Han G; Lu X; Zhou X Nanoscale; 2018 Aug; 10(30):14546-14553. PubMed ID: 30024012 [TBL] [Abstract][Full Text] [Related]
11. Silicon As an Unexpected n-Type Dopant in BiCuSeO Thermoelectrics. Shen J; Chen Y ACS Appl Mater Interfaces; 2017 Aug; 9(33):27372-27376. PubMed ID: 28771305 [TBL] [Abstract][Full Text] [Related]
12. Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium. Zhang Q; Cao F; Lukas K; Liu W; Esfarjani K; Opeil C; Broido D; Parker D; Singh DJ; Chen G; Ren Z J Am Chem Soc; 2012 Oct; 134(42):17731-8. PubMed ID: 23025440 [TBL] [Abstract][Full Text] [Related]
13. Hf/Sb co-doping induced a high thermoelectric performance of ZrNiSn: First-principles calculation. Zhang J; Zhang X; Wang Y Sci Rep; 2017 Nov; 7(1):14590. PubMed ID: 29109433 [TBL] [Abstract][Full Text] [Related]
14. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study. Guo SD; Zhang AX; Li HC Nanotechnology; 2017 Nov; 28(44):445702. PubMed ID: 28825405 [TBL] [Abstract][Full Text] [Related]
15. First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals. Hasan S; San S; Baral K; Li N; Rulis P; Ching WY Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454538 [TBL] [Abstract][Full Text] [Related]
16. Crucial Role of Ni Point Defects and Sb Doping for Tailoring the Thermoelectric Properties of ZrNiSn Half-Heusler Alloy: An Ab Initio Study. Ascrizzi E; Ribaldone C; Casassa S Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473533 [TBL] [Abstract][Full Text] [Related]
17. Energetic and electronic properties of X- (Si, Ge, Sn, Pb) doped TiO2 from first-principles. Long R; Dai Y; Meng G; Huang B Phys Chem Chem Phys; 2009 Oct; 11(37):8165-72. PubMed ID: 19756272 [TBL] [Abstract][Full Text] [Related]
18. Thermoelectric power factor of doped Bi Hu K; Han J; Xu B; Lin YH Phys Chem Chem Phys; 2020 Dec; 22(46):27096-27104. PubMed ID: 33220667 [TBL] [Abstract][Full Text] [Related]
19. Optical and thermoelectric properties of new Janus ZnMN Ali B; Idrees M; Alrebdi TA; Amin B; Alam Q Nanoscale Adv; 2024 Jan; 6(2):680-689. PubMed ID: 38235097 [TBL] [Abstract][Full Text] [Related]
20. The relationship between the electronic structure and thermoelectric properties of Zintl compounds M2Zn5As4 (M = K, Rb). Yang G; Yang J; Yan Y; Wang Y Phys Chem Chem Phys; 2014 Mar; 16(12):5661-6. PubMed ID: 24522347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]