These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29851558)

  • 1. The contributions of the actin machinery to endocytic membrane bending and vesicle formation.
    Picco A; Kukulski W; Manenschijn HE; Specht T; Briggs JAG; Kaksonen M
    Mol Biol Cell; 2018 Jun; 29(11):1346-1358. PubMed ID: 29851558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type-I myosins promote actin polymerization to drive membrane bending in endocytosis.
    Manenschijn HE; Picco A; Mund M; Rivier-Cordey AS; Ries J; Kaksonen M
    Elife; 2019 Aug; 8():. PubMed ID: 31385806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned Actin Nucleation.
    Mund M; van der Beek JA; Deschamps J; Dmitrieff S; Hoess P; Monster JL; Picco A; Nédélec F; Kaksonen M; Ries J
    Cell; 2018 Aug; 174(4):884-896.e17. PubMed ID: 30057119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modular design for the clathrin- and actin-mediated endocytosis machinery.
    Kaksonen M; Toret CP; Drubin DG
    Cell; 2005 Oct; 123(2):305-20. PubMed ID: 16239147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis.
    Skruzny M; Brach T; Ciuffa R; Rybina S; Wachsmuth M; Kaksonen M
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):E2533-42. PubMed ID: 22927393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type I myosins anchor actin assembly to the plasma membrane during clathrin-mediated endocytosis.
    Pedersen RTA; Drubin DG
    J Cell Biol; 2019 Apr; 218(4):1138-1147. PubMed ID: 30659101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin-generated force applied during endocytosis measured by Sla2-based FRET tension sensors.
    Abella M; Andruck L; Malengo G; Skruzny M
    Dev Cell; 2021 Sep; 56(17):2419-2426.e4. PubMed ID: 34473942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The endocytic protein machinery as an actin-driven membrane-remodeling machine.
    Skruzny M
    Eur J Cell Biol; 2022; 101(4):151267. PubMed ID: 35970066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for cross-linking proteins in actin filament network organization and force generation.
    Hill JM; Cai S; Carver MD; Drubin DG
    Proc Natl Acad Sci U S A; 2024 Oct; 121(43):e2407838121. PubMed ID: 39405356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis.
    Akamatsu M; Vasan R; Serwas D; Ferrin MA; Rangamani P; Drubin DG
    Elife; 2020 Jan; 9():. PubMed ID: 31951196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography.
    Kukulski W; Schorb M; Kaksonen M; Briggs JA
    Cell; 2012 Aug; 150(3):508-20. PubMed ID: 22863005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of membrane scission in yeast endocytosis.
    Menon D; Hummel D; Kaksonen M
    Mol Biol Cell; 2022 Oct; 33(12):ar114. PubMed ID: 35976707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the modeling of endocytosis in yeast.
    Zhang T; Sknepnek R; Bowick MJ; Schwarz JM
    Biophys J; 2015 Feb; 108(3):508-19. PubMed ID: 25650919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane.
    Idrissi FZ; Grötsch H; Fernández-Golbano IM; Presciatto-Baschong C; Riezman H; Geli MI
    J Cell Biol; 2008 Mar; 180(6):1219-32. PubMed ID: 18347067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A master equation approach to actin polymerization applied to endocytosis in yeast.
    Wang X; Carlsson AE
    PLoS Comput Biol; 2017 Dec; 13(12):e1005901. PubMed ID: 29240771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin assembly produces sufficient forces for endocytosis in yeast.
    Nickaeen M; Berro J; Pollard TD; Slepchenko BM
    Mol Biol Cell; 2019 Jul; 30(16):2014-2024. PubMed ID: 31242058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular requirements for the internalisation step of endocytosis: insights from yeast.
    Munn AL
    Biochim Biophys Acta; 2001 Mar; 1535(3):236-57. PubMed ID: 11278164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actin- and microtubule-based motors contribute to clathrin-independent endocytosis in yeast.
    Woodard TK; Rioux DJ; Prosser DC
    Mol Biol Cell; 2023 Nov; 34(12):ar117. PubMed ID: 37647159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin and endocytosis in budding yeast.
    Goode BL; Eskin JA; Wendland B
    Genetics; 2015 Feb; 199(2):315-58. PubMed ID: 25657349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast.
    Newpher TM; Smith RP; Lemmon V; Lemmon SK
    Dev Cell; 2005 Jul; 9(1):87-98. PubMed ID: 15992543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.