BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29852221)

  • 1. Mechanical variations in proteins with large-scale motions highlight the formation of structural locks.
    Sacquin-Mora S
    J Struct Biol; 2018 Sep; 203(3):195-204. PubMed ID: 29852221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach.
    Sacquin-Mora S
    Methods Enzymol; 2016; 578():227-48. PubMed ID: 27497169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus?
    Sacquin-Mora S
    J R Soc Interface; 2015 Nov; 12(112):. PubMed ID: 26577596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion.
    Budday D; Leyendecker S; van den Bedem H
    J Chem Inf Model; 2018 Oct; 58(10):2108-2122. PubMed ID: 30240209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grain simulations on NMR conformational ensembles highlight functional residues in proteins.
    Sacquin-Mora S
    J R Soc Interface; 2019 Jul; 16(156):20190075. PubMed ID: 31288649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models.
    Kmiecik S; Kouza M; Badaczewska-Dawid AE; Kloczkowski A; Kolinski A
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30404229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the effect of dynamics on the closed-loop protein-folding hypothesis.
    Chintapalli SV; Illingworth CJ; Upton GJ; Sacquin-Mora S; Reeves PJ; Mohammedali HS; Reynolds CA
    J R Soc Interface; 2014 Feb; 11(91):20130935. PubMed ID: 24258160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of large proteins through hierarchical levels of coarse-grained structures.
    Doruker P; Jernigan RL; Bahar I
    J Comput Chem; 2002 Jan; 23(1):119-27. PubMed ID: 11913377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rigidity of protein structure revealed by incoherent neutron scattering.
    Nakagawa H; Kataoka M
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129536. PubMed ID: 31958544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexibility and rigidity, requirements for the function of proteins and protein pigment complexes. Eleventh Keilin memorial lecture.
    Huber R
    Biochem Soc Trans; 1987 Dec; 15(6):1009-20. PubMed ID: 3502256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.
    Su JG; Han XM; Zhang X; Hou YX; Zhu JZ; Wu YD
    J Biomol Struct Dyn; 2016; 34(3):560-71. PubMed ID: 25909329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses.
    Jimenez-Roldan JE; Freedman RB; Römer RA; Wells SA
    Phys Biol; 2012 Feb; 9(1):016008. PubMed ID: 22313618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric structural motions of the homomeric alpha7 nicotinic receptor ligand binding domain revealed by molecular dynamics simulation.
    Henchman RH; Wang HL; Sine SM; Taylor P; McCammon JA
    Biophys J; 2003 Nov; 85(5):3007-18. PubMed ID: 14581202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-level characterization of the structural dynamics of proteins.
    Shaw DE; Maragakis P; Lindorff-Larsen K; Piana S; Dror RO; Eastwood MP; Bank JA; Jumper JM; Salmon JK; Shan Y; Wriggers W
    Science; 2010 Oct; 330(6002):341-6. PubMed ID: 20947758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developments and Applications of Coil-Library-Based Residue-Specific Force Fields for Molecular Dynamics Simulations of Peptides and Proteins.
    Jiang F; Wu HN; Kang W; Wu YD
    J Chem Theory Comput; 2019 May; 15(5):2761-2773. PubMed ID: 30620582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.
    Duan Y; Wu C; Chowdhury S; Lee MC; Xiong G; Zhang W; Yang R; Cieplak P; Luo R; Lee T; Caldwell J; Wang J; Kollman P
    J Comput Chem; 2003 Dec; 24(16):1999-2012. PubMed ID: 14531054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterizing elastic network models to capture the dynamics of proteins.
    Koehl P; Orland H; Delarue M
    J Comput Chem; 2021 Sep; 42(23):1643-1661. PubMed ID: 34117647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Protein Dynamics Directly from Sequences.
    Jia K; Kilinc M; Jernigan RL
    J Phys Chem B; 2023 Mar; 127(9):1914-1921. PubMed ID: 36848294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.