BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29852271)

  • 1. A CRISPR/Cas9 based engineering strategy for overexpression of multiple genes in Chinese hamster ovary cells.
    Eisenhut P; Klanert G; Weinguny M; Baier L; Jadhav V; Ivansson D; Borth N
    Metab Eng; 2018 Jul; 48():72-81. PubMed ID: 29852271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells.
    Shin SW; Kim D; Lee JS
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering.
    Glinšek K; Bozovičar K; Bratkovič T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-Mediated Knockout of MicroRNA-744 Improves Antibody Titer of CHO Production Cell Lines.
    Raab N; Mathias S; Alt K; Handrick R; Fischer S; Schmieder V; Jadhav V; Borth N; Otte K
    Biotechnol J; 2019 May; 14(5):e1800477. PubMed ID: 30802343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of hyperosmotic stress-responsive genes in Chinese hamster ovary cells via genome-wide virus-free CRISPR/Cas9 screening.
    Kim SH; Shin S; Baek M; Xiong K; Karottki KJC; Hefzi H; Grav LM; Pedersen LE; Kildegaard HF; Lewis NE; Lee JS; Lee GM
    Metab Eng; 2023 Nov; 80():66-77. PubMed ID: 37709005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas13d for Gene Knockdown and Engineering of CHO Cells.
    Shen CC; Lin MW; Nguyen BKT; Chang CW; Shih JR; Nguyen MTT; Chang YH; Hu YC
    ACS Synth Biol; 2020 Oct; 9(10):2808-2818. PubMed ID: 32911927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput, efficacious gene editing & genome surveillance in Chinese hamster ovary cells.
    Huhn SC; Ou Y; Kumar A; Liu R; Du Z
    PLoS One; 2019; 14(12):e0218653. PubMed ID: 31856197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Based Targeted Epigenetic Editing Enables Gene Expression Modulation of the Silenced Beta-Galactoside Alpha-2,6-Sialyltransferase 1 in CHO Cells.
    Marx N; Grünwald-Gruber C; Bydlinski N; Dhiman H; Ngoc Nguyen L; Klanert G; Borth N
    Biotechnol J; 2018 Oct; 13(10):e1700217. PubMed ID: 29802757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ribonucleoprotein-based decaplex CRISPR/Cas9 knockout strategy for CHO host engineering.
    Carver J; Kern M; Ko P; Greenwood-Goodwin M; Yu XC; Duan D; Tang D; Misaghi S; Auslaender S; Haley B; Yuk IH; Shen A
    Biotechnol Prog; 2022 Jan; 38(1):e3212. PubMed ID: 34538022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells.
    Shin SW; Lee JS
    Biotechnol Bioeng; 2020 Jun; 117(6):1895-1903. PubMed ID: 32086804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference.
    Shen CC; Sung LY; Lin SY; Lin MW; Hu YC
    ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.
    Sakuma T; Takenaga M; Kawabe Y; Nakamura T; Kamihira M; Yamamoto T
    Int J Mol Sci; 2015 Oct; 16(10):23849-66. PubMed ID: 26473830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas12a-mediated CHO genome engineering can be effectively integrated at multiple stages of the cell line generation process for bioproduction.
    Schweickert PG; Wang N; Sandefur SL; Lloyd ME; Konieczny SF; Frye CC; Cheng Z
    Biotechnol J; 2021 Apr; 16(4):e2000308. PubMed ID: 33369118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency and multilocus targeted integration in CHO cells using CRISPR-mediated donor nicking and DNA repair inhibitors.
    Hamaker NK; Lee KH
    Biotechnol Bioeng; 2023 Sep; 120(9):2419-2440. PubMed ID: 37039773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated generation of gene-engineered monoclonal CHO cell lines using FluidFM nanoinjection and CRISPR/Cas9.
    Antony JS; Herranz AM; Mohammadian Gol T; Mailand S; Monnier P; Rottenberger J; Roig-Merino A; Keller B; Gowin C; Milla M; Beyer TA; Mezger M
    Biotechnol J; 2024 Apr; 19(4):e2300505. PubMed ID: 38651269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pooled CRISPR/AsCpf1 screen using paired gRNAs to induce genomic deletions in Chinese hamster ovary cells.
    Schmieder V; Novak N; Dhiman H; Nguyen LN; Serafimova E; Klanert G; Baumann M; Kildegaard HF; Borth N
    Biotechnol Rep (Amst); 2021 Sep; 31():e00649. PubMed ID: 34277363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing.
    Rojek JB; Basavaraju Y; Nallapareddy S; Bulté DB; Baumgartner R; Schoffelen S; Grav LM; Goletz S; Pedersen LE
    Biotechnol Bioeng; 2023 Jun; 120(6):1478-1491. PubMed ID: 36864663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time and Cost-Effective Genome Editing Protocol for Simultaneous Caspase 8 Associated Protein 2 Gene Knock in/out in Chinese Hamster Ovary Cells Using CRISPR-Cas9 System.
    Sorourian S; Behzad Behbahani A; Forouzanfar M; Jafarinia M; Safari F
    Iran J Biotechnol; 2024 Jan; 22(1):e3714. PubMed ID: 38827341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.