These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29852284)

  • 1. Signal compartments in ultra-high field multi-echo gradient echo MRI reflect underlying tissue microstructure in the brain.
    Kadamangudi S; Reutens D; Sood S; Vegh V
    Neuroimage; 2018 Sep; 178():403-413. PubMed ID: 29852284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T.
    Thapaliya K; Vegh V; Bollmann S; Barth M
    Neuroimage; 2018 Nov; 182():407-416. PubMed ID: 29183776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR.
    Lim IA; Li X; Jones CK; Farrell JA; Vikram DS; van Zijl PC
    Neuroimage; 2014 Feb; 86():265-79. PubMed ID: 24113625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Echo time-dependent quantitative susceptibility mapping contains information on tissue properties.
    Sood S; Urriola J; Reutens D; O'Brien K; Bollmann S; Barth M; Vegh V
    Magn Reson Med; 2017 May; 77(5):1946-1958. PubMed ID: 27221590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of 7T GRE-MRI Signal Compartment Model Choice on Tissue Parameters.
    Thapaliya K; Vegh V; Bollmann S; Barth M
    Front Neurosci; 2020; 14():271. PubMed ID: 32457565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy.
    Thapaliya K; Urriola J; Barth M; Reutens DC; Bollmann S; Vegh V
    Magn Reson Imaging; 2019 Sep; 61():1-8. PubMed ID: 31075420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength.
    Deistung A; Schäfer A; Schweser F; Biedermann U; Turner R; Reichenbach JR
    Neuroimage; 2013 Jan; 65():299-314. PubMed ID: 23036448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of biological tissue structural anisotropy and anisotropy of magnetic susceptibility on the gradient echo MRI signal phase: theoretical background.
    Yablonskiy DA; Sukstanskii AL
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27862452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional MRI in human subjects with gradient-echo and spin-echo EPI at 9.4 T.
    Budde J; Shajan G; Zaitsev M; Scheffler K; Pohmann R
    Magn Reson Med; 2014 Jan; 71(1):209-18. PubMed ID: 23447097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.
    Wei H; Zhang Y; Gibbs E; Chen NK; Wang N; Liu C
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 26887812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of T
    Lee J; Nam Y; Choi JY; Kim EY; Oh SH; Kim DH
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27060968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the origins of echo-time-dependent quantitative susceptibility mapping (QSM) measurements in healthy tissue and cerebral microbleeds.
    Cronin MJ; Wang N; Decker KS; Wei H; Zhu WZ; Liu C
    Neuroimage; 2017 Apr; 149():98-113. PubMed ID: 28126551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI.
    Nunes D; Cruz TL; Jespersen SN; Shemesh N
    J Magn Reson; 2017 Apr; 277():117-130. PubMed ID: 28282586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated mapping of magnetic susceptibility using 3D planes-on-a-paddlewheel (POP) EPI at ultra-high field strength.
    Stäb D; Bollmann S; Langkammer C; Bredies K; Barth M
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27763692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative susceptibility mapping using single-shot echo-planar imaging.
    Sun H; Wilman AH
    Magn Reson Med; 2015 May; 73(5):1932-8. PubMed ID: 24938830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using multi-echo simultaneous multi-slice (SMS) EPI to improve functional MRI of the subcortical nuclei of the basal ganglia at ultra-high field (7T).
    Puckett AM; Bollmann S; Poser BA; Palmer J; Barth M; Cunnington R
    Neuroimage; 2018 May; 172():886-895. PubMed ID: 29208571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.
    Chen Y; Liu S; Wang Y; Kang Y; Haacke EM
    Magn Reson Imaging; 2018 Feb; 46():130-139. PubMed ID: 29056394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable flip angle echo planar time-resolved imaging (vFA-EPTI) for fast high-resolution gradient echo myelin water imaging.
    Dong Z; Wang F; Chan KS; Reese TG; Bilgic B; Marques JP; Setsompop K
    Neuroimage; 2021 May; 232():117897. PubMed ID: 33621694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo investigation of the multi-exponential T
    Wiggermann V; MacKay AL; Rauscher A; Helms G
    NMR Biomed; 2021 Feb; 34(2):e4429. PubMed ID: 33118238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field strength influences on gradient recalled echo MRI signal compartment frequency shifts.
    Sood S; Reutens DC; Kadamangudi S; Barth M; Vegh V
    Magn Reson Imaging; 2020 Jul; 70():98-107. PubMed ID: 32360972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.