These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 29852329)
1. Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates. Zheng BY; Yang XQ; Zhao Y; Zheng QF; Ke MR; Lin T; Chen RX; Ho KKK; Kumar N; Huang JD Eur J Med Chem; 2018 Jul; 155():24-33. PubMed ID: 29852329 [TBL] [Abstract][Full Text] [Related]
2. A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy. Li D; Hu QY; Wang XZ; Li X; Hu JQ; Zheng BY; Ke MR; Huang JD Bioorg Med Chem Lett; 2020 Jun; 30(12):127164. PubMed ID: 32291134 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and in vitro photodynamic activities of an integrin-targeting cRGD-conjugated zinc(II) phthalocyanine. Ke MR; Ng DK; Lo PC Chem Asian J; 2014 Feb; 9(2):554-61. PubMed ID: 24203795 [TBL] [Abstract][Full Text] [Related]
4. Axially substituted silicon(IV) phthalocyanine and its quaternized derivative as photosensitizers towards tumor cells and bacterial pathogens. Ömeroğlu İ; Kaya EN; Göksel M; Kussovski V; Mantareva V; Durmuş M Bioorg Med Chem; 2017 Oct; 25(20):5415-5422. PubMed ID: 28807573 [TBL] [Abstract][Full Text] [Related]
5. Preparation and in vitro photodynamic activities of novel axially substituted silicon (IV) phthalocyanines and their bovine serum albumin conjugates. Jiang XJ; Huang JD; Zhu YJ; Tang FX; Ng DK; Sun JC Bioorg Med Chem Lett; 2006 May; 16(9):2450-3. PubMed ID: 16464589 [TBL] [Abstract][Full Text] [Related]
6. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines. Luan L; Ding L; Shi J; Fang W; Ni Y; Liu W Chem Asian J; 2014 Dec; 9(12):3491-7. PubMed ID: 25303635 [TBL] [Abstract][Full Text] [Related]
8. The first silicon(IV) phthalocyanine-nucleoside conjugates with high photodynamic activity. Shen XM; Zheng BY; Huang XR; Wang L; Huang JD Dalton Trans; 2013 Aug; 42(29):10398-403. PubMed ID: 23774802 [TBL] [Abstract][Full Text] [Related]
9. Preparation and photodynamic activities of silicon(IV) phthalocyanines substituted with permethylated β-cyclodextrins. Lau JT; Lo PC; Fong WP; Ng DK Chemistry; 2011 Jun; 17(27):7569-77. PubMed ID: 21598326 [TBL] [Abstract][Full Text] [Related]
10. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy. Li K; Qiu L; Liu Q; Lv G; Zhao X; Wang S; Lin J J Photochem Photobiol B; 2017 Sep; 174():243-250. PubMed ID: 28802175 [TBL] [Abstract][Full Text] [Related]
11. An integrin-targeting glutathione-activated zinc(II) phthalocyanine for dual targeted photodynamic therapy. Ha SYY; Wong RCH; Wong CTT; Ng DKP Eur J Med Chem; 2019 Jul; 174():56-65. PubMed ID: 31029944 [TBL] [Abstract][Full Text] [Related]
12. A phthalocyanine-peptide conjugate with high in vitro photodynamic activity and enhanced in vivo tumor-retention property. Ke MR; Yeung SL; Fong WP; Ng DK; Lo PC Chemistry; 2012 Apr; 18(14):4225-33. PubMed ID: 22378352 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizers with highly hydrophilic modifications. Li F; Liu Q; Liang Z; Wang J; Pang M; Huang W; Wu W; Hong Z Org Biomol Chem; 2016 Apr; 14(13):3409-22. PubMed ID: 26956169 [TBL] [Abstract][Full Text] [Related]
14. Size-Tunable Targeting-Triggered Nanophotosensitizers Based on Self-Assembly of a Phthalocyanine-Biotin Conjugate for Photodynamic Therapy. Li D; Wang XZ; Yang LF; Li SC; Hu QY; Li X; Zheng BY; Ke MR; Huang JD ACS Appl Mater Interfaces; 2019 Oct; 11(40):36435-36443. PubMed ID: 31525892 [TBL] [Abstract][Full Text] [Related]
15. Lenvatinib-zinc phthalocyanine conjugates as potential agents for enhancing synergistic therapy of multidrug-resistant cancer by glutathione depletion. Wei G; Huang L; Jiang Y; Shen Y; Huang Z; Huang Y; Sun X; Zhao C Eur J Med Chem; 2019 May; 169():53-64. PubMed ID: 30856406 [TBL] [Abstract][Full Text] [Related]
16. Peptide-substituted phthalocyanine photosensitizers: design, synthesis, photophysicochemical and photobiological studies. Göksel M; Durmuş M; Atilla D Photochem Photobiol Sci; 2016 Oct; 15(10):1318-1329. PubMed ID: 27714248 [TBL] [Abstract][Full Text] [Related]
17. Phthalocyanine-sulfonamide conjugates: Synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria. da Silva RN; Cunha Â; Tomé AC Eur J Med Chem; 2018 Jun; 154():60-67. PubMed ID: 29777987 [TBL] [Abstract][Full Text] [Related]
18. Silicon(IV) phthalocyanines substituted axially with different nucleoside moieties. Effects of nucleoside type on the photosensitizing efficiencies and in vitro photodynamic activities. Zheng BY; Shen XM; Zhao DM; Cai YB; Ke MR; Huang JD J Photochem Photobiol B; 2016 Jun; 159():196-204. PubMed ID: 27085051 [TBL] [Abstract][Full Text] [Related]
19. Phthalocyanine-polyamine conjugates as highly efficient photosensitizers for photodynamic therapy. Jiang XJ; Yeung SL; Lo PC; Fong WP; Ng DK J Med Chem; 2011 Jan; 54(1):320-30. PubMed ID: 21138268 [TBL] [Abstract][Full Text] [Related]
20. Interest of RGD-containing linear or cyclic peptide targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic activity. Frochot C; Di Stasio B; Vanderesse R; Belgy MJ; Dodeller M; Guillemin F; Viriot ML; Barberi-Heyob M Bioorg Chem; 2007 Jun; 35(3):205-20. PubMed ID: 17223161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]