BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29852734)

  • 1. Decoding Allosteric Communication Pathways in Cyclophilin A with a Comparative Analysis of Perturbed Conformational Ensembles.
    Rodriguez-Bussey I; Yao XQ; Shouaib AD; Lopez J; Hamelberg D
    J Phys Chem B; 2018 Jun; 122(25):6528-6535. PubMed ID: 29852734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation.
    Doshi U; Holliday MJ; Eisenmesser EZ; Hamelberg D
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4735-40. PubMed ID: 27071107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Networks of Dynamic Allostery Regulate Enzyme Function.
    Holliday MJ; Camilloni C; Armstrong GS; Vendruscolo M; Eisenmesser EZ
    Structure; 2017 Feb; 25(2):276-286. PubMed ID: 28089447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1-(2,6-Dibenzyloxybenzoyl)-3-(9H-fluoren-9-yl)-urea: a novel cyclophilin A allosteric activator.
    Lv M; Shi T; Mao X; Li X; Chen Y; Zhu J; Ni S; Shen X; Jiang H; Li J; Zhang J; Huang J
    Biochem Biophys Res Commun; 2012 Sep; 425(4):938-43. PubMed ID: 22906739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropic and surprisingly small intramolecular polarization effects in the mechanism of cyclophilin A.
    Ladani ST; Hamelberg D
    J Phys Chem B; 2012 Sep; 116(35):10771-8. PubMed ID: 22891696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies.
    Agarwal PK
    Proteins; 2004 Aug; 56(3):449-63. PubMed ID: 15229879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclophilin A inhibition: targeting transition-state-bound enzyme conformations for structure-based drug design.
    Nagaraju M; McGowan LC; Hamelberg D
    J Chem Inf Model; 2013 Feb; 53(2):403-10. PubMed ID: 23312027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover.
    McGowan LC; Hamelberg D
    Biophys J; 2013 Jan; 104(1):216-26. PubMed ID: 23332074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco) and Its Active Site for Chemotaxis.
    Dawar FU; Tu J; Xiong Y; Lan J; Dong XX; Liu X; Khattak MN; Mei J; Lin L
    Int J Mol Sci; 2016 Aug; 17(9):. PubMed ID: 27589721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic allostery governs cyclophilin A-HIV capsid interplay.
    Lu M; Hou G; Zhang H; Suiter CL; Ahn J; Byeon IJ; Perilla JR; Langmead CJ; Hung I; Gor'kov PL; Gan Z; Brey W; Aiken C; Zhang P; Schulten K; Gronenborn AM; Polenova T
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14617-22. PubMed ID: 26553990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
    Verkhivker GM
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):210-225. PubMed ID: 30339916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PyInteraph Workflow for the Study of Interaction Networks From Protein Structural Ensembles.
    Lambrughi M; Sora V; Tiberti M
    Methods Mol Biol; 2021; 2253():153-174. PubMed ID: 33315223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic dynamics of an enzyme underlies catalysis.
    Eisenmesser EZ; Millet O; Labeikovsky W; Korzhnev DM; Wolf-Watz M; Bosco DA; Skalicky JJ; Kay LE; Kern D
    Nature; 2005 Nov; 438(7064):117-21. PubMed ID: 16267559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled Dynamics and Entropic Contribution to the Allosteric Mechanism of Pin1.
    Barman A; Hamelberg D
    J Phys Chem B; 2016 Aug; 120(33):8405-15. PubMed ID: 27077947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keep on moving: discovering and perturbing the conformational dynamics of enzymes.
    Bhabha G; Biel JT; Fraser JS
    Acc Chem Res; 2015 Feb; 48(2):423-30. PubMed ID: 25539415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A.
    Agarwal PK; Geist A; Gorin A
    Biochemistry; 2004 Aug; 43(33):10605-18. PubMed ID: 15311922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescue of conformational dynamics in enzyme catalysis by directed evolution.
    Otten R; Liu L; Kenner LR; Clarkson MW; Mavor D; Tawfik DS; Kern D; Fraser JS
    Nat Commun; 2018 Apr; 9(1):1314. PubMed ID: 29615624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational full electron structure study of biological activity in Cyclophilin A.
    Zhou W; Rossetto AM; Pang X; Zhou L
    J Biomol Struct Dyn; 2016; 34(4):870-6. PubMed ID: 26264861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A.
    Brazin KN; Mallis RJ; Fulton DB; Andreotti AH
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):1899-904. PubMed ID: 11830645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.