These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 29852818)
21. Controlling the mobility of chromium and molybdenum in MSWI fly ash in a washing process. Nordmark D; Lagerkvist A Waste Manag; 2018 Jun; 76():727-733. PubMed ID: 29551230 [TBL] [Abstract][Full Text] [Related]
22. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. Luna Galiano Y; Fernández Pereira C; Vale J J Hazard Mater; 2011 Jan; 185(1):373-81. PubMed ID: 20943314 [TBL] [Abstract][Full Text] [Related]
23. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Ribé V; Nehrenheim E; Odlare M Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934 [TBL] [Abstract][Full Text] [Related]
24. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
25. Determination and evaluation of hexavalent chromium in power plant coal combustion by-products and cost-effective environmental remediation solutions using acid mine drainage. Kingston HM; Cain R; Huo D; Rahman GM J Environ Monit; 2005 Sep; 7(9):899-905. PubMed ID: 16121270 [TBL] [Abstract][Full Text] [Related]
26. Stabilization of lead in an alkali-activated municipal solid waste incineration fly ash-Pyrophyllite-based system. Shiota K; Nakamura T; Takaoka M; Aminuddin SF; Oshita K; Fujimori T J Environ Manage; 2017 Oct; 201():327-334. PubMed ID: 28688320 [TBL] [Abstract][Full Text] [Related]
27. The effects of the mechanical-chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste. Chen CG; Sun CJ; Gau SH; Wu CW; Chen YL Waste Manag; 2013 Apr; 33(4):858-65. PubMed ID: 23375995 [TBL] [Abstract][Full Text] [Related]
28. [Heavy metal stabilization in municipal solid waste incineration fly ash using soluble phosphate]. Jiang JG; Zhang Y; Xu X; Wang J; Deng Z; Zhao ZZ Huan Jing Ke Xue; 2005 Jul; 26(4):191-4. PubMed ID: 16212195 [TBL] [Abstract][Full Text] [Related]
29. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation. Kavouras P; Pantazopoulou E; Varitis S; Vourlias G; Chrissafis K; Dimitrakopulos GP; Mitrakas M; Zouboulis AI; Karakostas T; Xenidis A J Hazard Mater; 2015; 283():672-9. PubMed ID: 25464309 [TBL] [Abstract][Full Text] [Related]
30. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash. Liu W; Hou H; Zhang C; Zhang D Waste Manag Res; 2009 May; 27(3):258-66. PubMed ID: 19423575 [TBL] [Abstract][Full Text] [Related]
31. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation. Lassesson H; Fedje KK; Steenari BM Waste Manag Res; 2014 Aug; 32(8):755-62. PubMed ID: 25106538 [TBL] [Abstract][Full Text] [Related]
32. Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites. Goh CK; Valavan SE; Low TK; Tang LH Waste Manag; 2016 Dec; 58():309-315. PubMed ID: 27267794 [TBL] [Abstract][Full Text] [Related]
33. Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions. Rha CY; Kang SK; Kim CE J Hazard Mater; 2000 Apr; 73(3):255-67. PubMed ID: 10751696 [TBL] [Abstract][Full Text] [Related]
34. Stabilization of a chromium-containing solid waste: immobilization of hexavalent chromium. Rodriguez-Pinero M; Fernandez Pereira C ; de Elvira Francoy CR ; Vale Parapar JF J Air Waste Manag Assoc; 1998 Nov; 48(11):1093-9. PubMed ID: 9846133 [TBL] [Abstract][Full Text] [Related]
35. [Fundamental properties of fly ash from municipal solid waste incineration]. Wang J; Jiang JG; Sui JC; Yang SJ; Zhang Y Huan Jing Ke Xue; 2006 Nov; 27(11):2283-7. PubMed ID: 17326441 [TBL] [Abstract][Full Text] [Related]
36. Characteristics of the cement-solidified municipal solid waste incineration fly ash. Li J; Zeng M; Ji W Environ Sci Pollut Res Int; 2018 Dec; 25(36):36736-36744. PubMed ID: 30382514 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests. Fujii K; Ochi K; Ohbuchi A; Koike Y J Environ Manage; 2018 Jul; 217():157-163. PubMed ID: 29602076 [TBL] [Abstract][Full Text] [Related]
38. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives. Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484 [TBL] [Abstract][Full Text] [Related]
39. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash. Zhang D; Liu W; Hou H; He X Waste Manag Res; 2007 Oct; 25(5):402-7. PubMed ID: 17985665 [TBL] [Abstract][Full Text] [Related]
40. Solidification/stabilization of highly toxic arsenic-alkali residue by MSWI fly ash-based cementitious material containing Friedel's salt: Efficiency and mechanism. Jiang G; Min X; Ke Y; Liang Y; Yan X; Xu W; Lin Z J Hazard Mater; 2022 Mar; 425():127992. PubMed ID: 34896713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]