BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2985310)

  • 1. Auto-oxidation and a membrane-associated 'Fenton reagent': a possible explanation for development of membrane lesions in sickle erythrocytes.
    Hebbel RP
    Clin Haematol; 1985 Feb; 14(1):129-40. PubMed ID: 2985310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous oxygen radical generation by sickle erythrocytes.
    Hebbel RP; Eaton JW; Balasingam M; Steinberg MH
    J Clin Invest; 1982 Dec; 70(6):1253-9. PubMed ID: 6294138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane phospholipid organization and vesiculation of erythrocytes in sickle cell anaemia.
    Wagner GM; Schwartz RS; Chiu DT; Lubin BH
    Clin Haematol; 1985 Feb; 14(1):183-200. PubMed ID: 3886236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adhesive sickle erythrocyte: cause and consequence of abnormal interactions with endothelium, monocytes/macrophages and model membranes.
    Hebbel RP; Schwartz RS; Mohandas N
    Clin Haematol; 1985 Feb; 14(1):141-61. PubMed ID: 3886233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically important secondary modifications of red cell membrane in hereditary spherocytosis-evidence for in vivo oxidation and lipid rafts protein variations.
    Margetis P; Antonelou M; Karababa F; Loutradi A; Margaritis L; Papassideri I
    Blood Cells Mol Dis; 2007; 38(3):210-20. PubMed ID: 17208471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte autoxidation and the membrane abnormalities of sickle red cells.
    Hebbel RP
    Prog Clin Biol Res; 1984; 159():219-25. PubMed ID: 6473462
    [No Abstract]   [Full Text] [Related]  

  • 8. Increased susceptibility of erythrocyte membrane lipids to peroxidation in sickle cell disease.
    Essien EU
    Cent Afr J Med; 1994 Aug; 40(8):217-20. PubMed ID: 7813000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excess heme in sickle erythrocyte inside-out membranes: possible role in thiol oxidation.
    Kuross SA; Rank BH; Hebbel RP
    Blood; 1988 Apr; 71(4):876-82. PubMed ID: 3355895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the organization of plasma membrane phospholipids in human erythrocytes.
    Schwartz RS; Chiu DT; Lubin B
    Prog Clin Biol Res; 1984; 159():89-122. PubMed ID: 6473467
    [No Abstract]   [Full Text] [Related]  

  • 11. Protein 4.1 in sickle erythrocytes. Evidence for oxidative damage.
    Schwartz RS; Rybicki AC; Heath RH; Lubin BH
    J Biol Chem; 1987 Nov; 262(32):15666-72. PubMed ID: 3316203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.
    Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE
    Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents.
    Repka T; Hebbel RP
    Blood; 1991 Nov; 78(10):2753-8. PubMed ID: 1668610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of long term bed rest in men on enzymatic antioxidative defence and lipid peroxidation in erythrocytes.
    Pawlak W; Kedziora J; Zolynski K; Kedziora-Kornatowska K; Blaszczyk J; Witkowski P; Zieleniewski J
    J Gravit Physiol; 1998 Jul; 5(1):P163-4. PubMed ID: 11542339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased G3PDH binding to erythrocyte membranes in sickle cell disease.
    Vasseur C; Leclerc L; Hilly M; Bursaux E
    Nouv Rev Fr Hematol (1978); 1992; 34(2):155-61. PubMed ID: 1502022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte membrane sulfatide plays a crucial role in the adhesion of sickle erythrocytes to endothelium.
    Zhou Z; Thiagarajan P; Udden M; Lòpez JA; Guchhait P
    Thromb Haemost; 2011 Jun; 105(6):1046-52. PubMed ID: 21437360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of abnormal hemoglobins on the membrane regulation of cell hydration.
    Clark MR; Shohet SB
    Tex Rep Biol Med; 1980-1981; 40():417-29. PubMed ID: 7034277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of diamide on protein oxidation and physico-chemical properties of lipids in erythrocyte membranes].
    Kozlova NM; Luk'ianenko LM; Antonovich AN; Kut'ko AG; Zubritskaia GP; Slobozhanina EI
    Biofizika; 2002; 47(3):500-5. PubMed ID: 12068607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal redox status of membrane-protein thiols in sickle erythrocytes.
    Rank BH; Carlsson J; Hebbel RP
    J Clin Invest; 1985 May; 75(5):1531-7. PubMed ID: 3998148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The possible role of red blood cell microvesicles in atherosclerosis.
    Blum A
    Eur J Intern Med; 2009 Mar; 20(2):101-5. PubMed ID: 19327596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.