These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 29853121)
1. Cellular response to nano-structured Zr and ZrO Zhang X; Zhang G; Li J; He X; Wang Y; Hang R; Huang X; Tang B; Chu PK Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():523-530. PubMed ID: 29853121 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical corrosion, wear and cell behavior of ZrO Li J; He X; Zhang G; Hang R; Huang X; Tang B; Zhang X Bioelectrochemistry; 2018 Jun; 121():105-114. PubMed ID: 29413860 [TBL] [Abstract][Full Text] [Related]
3. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications. Tkachenko S; Datskevich O; Kulak L; Jacobson S; Engqvist H; Persson C J Mech Behav Biomed Mater; 2014 Nov; 39():61-72. PubMed ID: 25105238 [TBL] [Abstract][Full Text] [Related]
4. Effect of Anodized TiO Qadir M; Lin J; Biesiekierski A; Li Y; Wen C ACS Appl Mater Interfaces; 2020 Feb; 12(5):6776-6787. PubMed ID: 31917541 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of biocompatible Ti-6Al-4V composite reinforced with ZrO Pul M; Erdem Ü; Bozer BM; Şimşek T; Yılmazel R; Erten MY Microsc Res Tech; 2024 Nov; 87(11):2728-2744. PubMed ID: 38988128 [TBL] [Abstract][Full Text] [Related]
6. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium. Rajan ST; V V AT; Terada-Nakaishi M; Chen P; Hanawa T; Nandakumar AK; Subramanian B Biomed Mater; 2020 Oct; 15(6):065019. PubMed ID: 32615545 [TBL] [Abstract][Full Text] [Related]
7. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
8. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V. Challa VS; Mali S; Misra RD J Biomed Mater Res A; 2013 Jul; 101(7):2083-9. PubMed ID: 23349101 [TBL] [Abstract][Full Text] [Related]
9. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications. Hua N; Huang L; Chen W; He W; Zhang T Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():400-10. PubMed ID: 25280721 [TBL] [Abstract][Full Text] [Related]
10. In-situ fabrication of zirconium-titanium nano-composite and its coating on Ti-6Al-4V for biomedical applications. Chellappa M; Vijayalakshmi U IET Nanobiotechnol; 2017 Feb; 11(1):83-90. PubMed ID: 28476967 [TBL] [Abstract][Full Text] [Related]
11. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. Samuel S; Nag S; Nasrazadani S; Ukirde V; El Bouanani M; Mohandas A; Nguyen K; Banerjee R J Biomed Mater Res A; 2010 Sep; 94(4):1251-6. PubMed ID: 20694992 [TBL] [Abstract][Full Text] [Related]
12. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
13. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786 [TBL] [Abstract][Full Text] [Related]
14. Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Sista S; Nouri A; Li Y; Wen C; Hodgson PD; Pande G J Biomed Mater Res A; 2013 Dec; 101(12):3416-30. PubMed ID: 23559548 [TBL] [Abstract][Full Text] [Related]
15. In vitro corrosion behavior and biocompatibility of nanostructured Ti6Al4V. Huo WT; Zhao LZ; Zhang W; Lu JW; Zhao YQ; Zhang YS Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():268-279. PubMed ID: 30184751 [TBL] [Abstract][Full Text] [Related]
16. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Spriano S; Sarath Chandra V; Cochis A; Uberti F; Rimondini L; Bertone E; Vitale A; Scolaro C; Ferrari M; Cirisano F; Gautier di Confiengo G; Ferraris S Mater Sci Eng C Mater Biol Appl; 2017 May; 74():542-555. PubMed ID: 28254329 [TBL] [Abstract][Full Text] [Related]
17. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility. Li HF; Zhou FY; Li L; Zheng YF Sci Rep; 2016 Apr; 6():24414. PubMed ID: 27090955 [TBL] [Abstract][Full Text] [Related]
18. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys. Ning C; Ding D; Dai K; Zhai W; Chen L Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527 [TBL] [Abstract][Full Text] [Related]
19. In vitro biocompatibility of an ultrafine grained zirconium. Saldaña L; Méndez-Vilas A; Jiang L; Multigner M; González-Carrasco JL; Pérez-Prado MT; González-Martín ML; Munuera L; Vilaboa N Biomaterials; 2007 Oct; 28(30):4343-54. PubMed ID: 17624424 [TBL] [Abstract][Full Text] [Related]
20. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]