These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29853150)

  • 1. Effect of calcium pyrophosphate on microstructural evolution and in vitro biocompatibility of Ti-35Nb-7Zr composite by spark plasma sintering.
    Zhang L; Tan J; He ZY; Jiang YH
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():8-15. PubMed ID: 29853150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications.
    Hu H; Zhang L; He Z; Jiang Y; Tan J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():279-287. PubMed ID: 30813028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy.
    Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility.
    Kopova I; Stráský J; Harcuba P; Landa M; Janeček M; Bačákova L
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():230-238. PubMed ID: 26706526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological and microbiological interactions of Ti-35Nb-7Zr alloy and its basic elements on bone marrow stromal cells: good prospects for bone tissue engineering.
    de Camargo Reis Mello D; Rodrigues LM; D'Antola Mello FZ; Gonçalves TF; Ferreira B; Schneider SG; de Oliveira LD; de Vasconcellos LMR
    Int J Implant Dent; 2020 Oct; 6(1):65. PubMed ID: 33099690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study.
    de Andrade DP; de Vasconcellos LM; Carvalho IC; Forte LF; de Souza Santos EL; Prado RF; Santos DR; Cairo CA; Carvalho YR
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():538-44. PubMed ID: 26249625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical corrosion and bioactivity of Ti-Nb-Sn-hydroxyapatite composites fabricated by pulse current activated sintering.
    Xiaopeng W; Fantao K; Biqing H; Yuyong C
    J Mech Behav Biomed Mater; 2017 Nov; 75():222-227. PubMed ID: 28756282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of niobium content on the microstructure and Young's modulus of Ti-xNb-7Zr alloys for medical implants.
    Tan MHC; Baghi AD; Ghomashchi R; Xiao W; Oskouei RH
    J Mech Behav Biomed Mater; 2019 Nov; 99():78-85. PubMed ID: 31344525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of composition on in vitro degradability of Ti-Mg metal-metal composites.
    Ouyang S; Liu Y; Huang Q; Gan Z; Tang H
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110327. PubMed ID: 31761167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on Osseointegration Capability of β-Type Ti-Nb-Zr-Ta-Si Alloy for Orthopedic Implants.
    Sun Y; Liu Q; Yu Z; Ren L; Zhao X; Wang J
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of β-type TiNbZrTa alloys fabricated by laser powder bed fusion.
    Luo X; Yang C; Li RY; Wang H; Lu HZ; Song T; Ma HW; Li DD; Gebert A; Li YY
    Biomater Adv; 2022 Feb; 133():112625. PubMed ID: 35523650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering.
    Wang X; Chen Y; Xu L; Xiao S; Kong F; Woo KD
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2074-80. PubMed ID: 22098907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.
    do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR
    PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J
    Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spark anodization of titanium-zirconium alloy: surface characterization and bioactivity assessment.
    Sharma A; McQuillan AJ; Sharma LA; Waddell JN; Shibata Y; Duncan WJ
    J Mater Sci Mater Med; 2015 Aug; 26(8):221. PubMed ID: 26260697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys.
    Banerjee R; Nag S; Stechschulte J; Fraser HL
    Biomaterials; 2004 Aug; 25(17):3413-9. PubMed ID: 15020114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a beta-Ti-35Nb-7Zr-5Ta alloy for implant applications.
    Afonso CR; Ferrandini PL; Ramirez AJ; Caram R
    Acta Biomater; 2010 Apr; 6(4):1625-9. PubMed ID: 19913645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.