These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29853358)
1. Coffee arabica adulteration: Detection of wheat, corn and chickpea. Sezer B; Apaydin H; Bilge G; Boyaci IH Food Chem; 2018 Oct; 264():142-148. PubMed ID: 29853358 [TBL] [Abstract][Full Text] [Related]
2. Detection of Corn Adulteration in Brazilian Coffee (Coffea arabica) by Tocopherol Profiling and Near-Infrared (NIR) Spectroscopy. Winkler-Moser JK; Singh M; Rennick KA; Bakota EL; Jham G; Liu SX; Vaughn SF J Agric Food Chem; 2015 Dec; 63(49):10662-8. PubMed ID: 26600312 [TBL] [Abstract][Full Text] [Related]
3. Gamma-tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn. Jham GN; Winkler JK; Berhow MA; Vaughn SF J Agric Food Chem; 2007 Jul; 55(15):5995-9. PubMed ID: 17602658 [TBL] [Abstract][Full Text] [Related]
4. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics. Reis N; Franca AS; Oliveira LS Talanta; 2013 Oct; 115():563-8. PubMed ID: 24054633 [TBL] [Abstract][Full Text] [Related]
5. Detection of roasted and ground coffee adulteration by HPLC and by amperometric and by post-column derivatization UV-Vis detection. Domingues DS; Pauli ED; de Abreu JE; Massura FW; Cristiano V; Santos MJ; Nixdorf SL Food Chem; 2014 Mar; 146():353-62. PubMed ID: 24176354 [TBL] [Abstract][Full Text] [Related]
6. Quantification of Corn Adulteration in Wet and Dry-Processed Peaberry Ground Roasted Coffees by UV-Vis Spectroscopy and Chemometrics. Yulia M; Suhandy D Molecules; 2021 Oct; 26(20):. PubMed ID: 34684672 [TBL] [Abstract][Full Text] [Related]
7. Analysis of coffee adulterated with roasted corn and roasted soybean using voltammetric electronic tongue. Arrieta AA; Arrieta PL; Mendoza JM Acta Sci Pol Technol Aliment; 2019; 18(1):35-41. PubMed ID: 30927750 [TBL] [Abstract][Full Text] [Related]
8. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS). Velioglu HM; Sezer B; Bilge G; Baytur SE; Boyaci IH Meat Sci; 2018 Apr; 138():28-33. PubMed ID: 29289716 [TBL] [Abstract][Full Text] [Related]
9. Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Correia RM; Tosato F; Domingos E; Rodrigues RRT; Aquino LFM; Filgueiras PR; Lacerda V; Romão W Talanta; 2018 Jan; 176():59-68. PubMed ID: 28917795 [TBL] [Abstract][Full Text] [Related]
10. 16-O-methylcafestol is present in ground roast Arabica coffees: Implications for authenticity testing. Gunning Y; Defernez M; Watson AD; Beadman N; Colquhoun IJ; Le Gall G; Philo M; Garwood H; Williamson D; Davis AP; Kemsley EK Food Chem; 2018 May; 248():52-60. PubMed ID: 29329870 [TBL] [Abstract][Full Text] [Related]
11. Chemometric Authentication of Brazilian Coffees Based on Chemical Profiling. Monteiro PI; Santos JS; Rodionova OY; Pomerantsev A; Chaves ES; Rosso ND; Granato D J Food Sci; 2019 Nov; 84(11):3099-3108. PubMed ID: 31645089 [TBL] [Abstract][Full Text] [Related]
12. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry. Daniel D; Lopes FS; Santos VBD; do Lago CL Food Chem; 2018 Mar; 243():305-310. PubMed ID: 29146342 [TBL] [Abstract][Full Text] [Related]
13. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends. Cagliani LR; Pellegrino G; Giugno G; Consonni R Talanta; 2013 Mar; 106():169-73. PubMed ID: 23598112 [TBL] [Abstract][Full Text] [Related]
14. Coffee Adulteration: More than Two Decades of Research. Toci AT; Farah A; Pezza HR; Pezza L Crit Rev Anal Chem; 2016; 46(2):83-92. PubMed ID: 25633422 [TBL] [Abstract][Full Text] [Related]
15. Rapid authentication of coffee blends and quantification of 16-O-methylcafestol in roasted coffee beans by nuclear magnetic resonance. Schievano E; Finotello C; De Angelis E; Mammi S; Navarini L J Agric Food Chem; 2014 Dec; 62(51):12309-14. PubMed ID: 25431971 [TBL] [Abstract][Full Text] [Related]
16. Analysis of corn and sorghum flour mixtures using laser-induced breakdown spectroscopy. Akın PA; Sezer B; Bean SR; Peiris K; Tilley M; Apaydın H; Boyacı İH J Sci Food Agric; 2021 Feb; 101(3):1076-1084. PubMed ID: 32776325 [TBL] [Abstract][Full Text] [Related]
17. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy. Bilge G; Sezer B; Eseller KE; Berberoglu H; Topcu A; Boyaci IH Food Chem; 2016 Dec; 212():183-8. PubMed ID: 27374522 [TBL] [Abstract][Full Text] [Related]
18. SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee. Couto CC; Chávez DWH; Oliveira EMM; Freitas-Silva O; Casal S Food Chem; 2024 Jul; 446():138862. PubMed ID: 38430775 [TBL] [Abstract][Full Text] [Related]
19. Non-destructive determination of grass pea and pea flour adulteration in chickpea flour using near-infrared reflectance spectroscopy and chemometrics. Bala M; Sethi S; Sharma S; Mridula D; Kaur G J Sci Food Agric; 2023 Feb; 103(3):1294-1302. PubMed ID: 36098480 [TBL] [Abstract][Full Text] [Related]
20. Prediction of black, immature and sour defective beans in coffee blends by using Laser-Induced Breakdown Spectroscopy. Silva TV; Milori DMBP; Neto JAG; Ferreira EJ; Ferreira EC Food Chem; 2019 Apr; 278():223-227. PubMed ID: 30583366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]