BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 29853476)

  • 1. Intracellular and extracellular loops of LRRC8 are essential for volume-regulated anion channel function.
    Yamada T; Strange K
    J Gen Physiol; 2018 Jul; 150(7):1003-1015. PubMed ID: 29853476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular composition and heterogeneity of the LRRC8-containing swelling-activated osmolyte channels in primary rat astrocytes.
    Schober AL; Wilson CS; Mongin AA
    J Physiol; 2017 Nov; 595(22):6939-6951. PubMed ID: 28833202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structures of an LRRC8 chimera with native functional properties reveal heptameric assembly.
    Takahashi H; Yamada T; Denton JS; Strange K; Karakas E
    Elife; 2023 Mar; 12():. PubMed ID: 36897307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LRRC8A homohexameric channels poorly recapitulate VRAC regulation and pharmacology.
    Yamada T; Figueroa EE; Denton JS; Strange K
    Am J Physiol Cell Physiol; 2021 Mar; 320(3):C293-C303. PubMed ID: 33356947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidant-resistant LRRC8A/C anion channels support superoxide production by NADPH oxidase 1.
    Choi H; Rohrbough JC; Nguyen HN; Dikalova A; Lamb FS
    J Physiol; 2021 Jun; 599(12):3013-3036. PubMed ID: 33932953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leucine-rich repeat containing protein LRRC8A is essential for swelling-activated Cl- currents and embryonic development in zebrafish.
    Yamada T; Wondergem R; Morrison R; Yin VP; Strange K
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27688432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subunit-dependent oxidative stress sensitivity of LRRC8 volume-regulated anion channels.
    Gradogna A; Gavazzo P; Boccaccio A; Pusch M
    J Physiol; 2017 Nov; 595(21):6719-6733. PubMed ID: 28841766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular determinants underlying volume-regulated anion channel subunit-dependent oxidation sensitivity.
    Bertelli S; Zuccolini P; Gavazzo P; Pusch M
    J Physiol; 2022 Sep; 600(17):3965-3982. PubMed ID: 35861288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VRAC: molecular identification as LRRC8 heteromers with differential functions.
    Jentsch TJ; Lutter D; Planells-Cases R; Ullrich F; Voss FK
    Pflugers Arch; 2016 Mar; 468(3):385-93. PubMed ID: 26635246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs.
    Planells-Cases R; Lutter D; Guyader C; Gerhards NM; Ullrich F; Elger DA; Kucukosmanoglu A; Xu G; Voss FK; Reincke SM; Stauber T; Blomen VA; Vis DJ; Wessels LF; Brummelkamp TR; Borst P; Rottenberg S; Jentsch TJ
    EMBO J; 2015 Dec; 34(24):2993-3008. PubMed ID: 26530471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation and Anion Selectivity of Volume-regulated Anion Channels (VRACs) Depend on C-terminal Residues of the First Extracellular Loop.
    Ullrich F; Reincke SM; Voss FK; Stauber T; Jentsch TJ
    J Biol Chem; 2016 Aug; 291(33):17040-8. PubMed ID: 27325695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct contributions of LRRC8A and its paralogs to the VSOR anion channel from those of the ASOR anion channel.
    Sato-Numata K; Numata T; Inoue R; Sabirov RZ; Okada Y
    Channels (Austin); 2017 Mar; 11(2):167-172. PubMed ID: 27579940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute Protein Amounts and Relative Abundance of Volume-regulated Anion Channel (VRAC) LRRC8 Subunits in Cells and Tissues Revealed by Quantitative Immunoblotting.
    Pervaiz S; Kopp A; von Kleist L; Stauber T
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel.
    Strange K; Yamada T; Denton JS
    J Gen Physiol; 2019 Feb; 151(2):100-117. PubMed ID: 30651298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysics and Structure-Function Relationships of LRRC8-Formed Volume-Regulated Anion Channels.
    König B; Stauber T
    Biophys J; 2019 Apr; 116(7):1185-1193. PubMed ID: 30871717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC.
    Voss FK; Ullrich F; Münch J; Lazarow K; Lutter D; Mah N; Andrade-Navarro MA; von Kries JP; Stauber T; Jentsch TJ
    Science; 2014 May; 344(6184):634-8. PubMed ID: 24790029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels.
    Lutter D; Ullrich F; Lueck JC; Kempa S; Jentsch TJ
    J Cell Sci; 2017 Mar; 130(6):1122-1133. PubMed ID: 28193731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal Deletion of LRRC8/VRAC Channels Induces Proximal Tubulopathy.
    López-Cayuqueo KI; Planells-Cases R; Pietzke M; Oliveras A; Kempa S; Bachmann S; Jentsch TJ
    J Am Soc Nephrol; 2022 Aug; 33(8):1528-1545. PubMed ID: 35777784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Biology and Physiology of Volume-Regulated Anion Channel (VRAC).
    Osei-Owusu J; Yang J; Vitery MDC; Qiu Z
    Curr Top Membr; 2018; 81():177-203. PubMed ID: 30243432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Anion Channel LRRC8 Volume-Regulated Anion Channels in Transport of 2'3'-Cyclic GMP-AMP and Cisplatin under Steady State and Inflammation.
    Chen X; Wang L; Cao L; Li T; Li Z; Sun Y; Ding J; Zhou C; Xie Y; Yue N; Nan J; Jia XM; Peng C; Li H; Yang J; Xiao H
    J Immunol; 2021 May; 206(9):2061-2074. PubMed ID: 33827893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.