These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29853527)

  • 41. Plasmodium falciparum is dependent on de novo myo-inositol biosynthesis for assembly of GPI glycolipids and infectivity.
    Macrae JI; Lopaticki S; Maier AG; Rupasinghe T; Nahid A; Cowman AF; McConville MJ
    Mol Microbiol; 2014 Feb; 91(4):762-76. PubMed ID: 24350823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system.
    Park YH; Shi YP; Liang B; Medriano CA; Jeon YH; Torres E; Uppal K; Slutsker L; Jones DP
    Malar J; 2015 Mar; 14():122. PubMed ID: 25889340
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PI4-kinase and PfCDPK7 signaling regulate phospholipid biosynthesis in Plasmodium falciparum.
    Maurya R; Tripathi A; Kumar M; Antil N; Yamaryo-Botté Y; Kumar P; Bansal P; Doerig C; Botté CY; Prasad TSK; Sharma P
    EMBO Rep; 2022 Feb; 23(2):e54022. PubMed ID: 34866326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum.
    Hsiao LL; Howard RJ; Aikawa M; Taraschi TF
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):121-32. PubMed ID: 2001227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential contributions of choline phosphotransferases CPT1 and CEPT1 to the biosynthesis of choline phospholipids.
    Horibata Y; Sugimoto H
    J Lipid Res; 2021; 62():100100. PubMed ID: 34331935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phospholipid uptake by Plasmodium knowlesi infected erythrocytes.
    Moll GN; Vial HJ; Ancelin ML; Op den Kamp JA; Roelofsen B; van Deenen LL
    FEBS Lett; 1988 May; 232(2):341-6. PubMed ID: 3378625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic alterations in the erythrocyte during blood-stage development of the malaria parasite.
    Tewari SG; Swift RP; Reifman J; Prigge ST; Wallqvist A
    Malar J; 2020 Feb; 19(1):94. PubMed ID: 32103749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptation to temperature: phospholipid synthesis in hepatocytes of rainbow trout.
    Hazel JR
    Am J Physiol; 1990 Jun; 258(6 Pt 2):R1495-501. PubMed ID: 2163224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.
    Phaiphinit S; Pattaradilokrat S; Lursinsap C; Plaimas K
    Infect Genet Evol; 2016 Jan; 37():237-44. PubMed ID: 26626103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum.
    Clark K; Niemand J; Reeksting S; Smit S; van Brummelen AC; Williams M; Louw AI; Birkholtz L
    Amino Acids; 2010 Feb; 38(2):633-44. PubMed ID: 19997948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipid transport in Plasmodium.
    Haldar K
    Infect Agents Dis; 1992 Oct; 1(5):254-62. PubMed ID: 1344664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of phospholipid synthesis precursors and lipid trafficking into malaria-infected erythrocytes.
    Vial HJ; Eldin P; Martin D; Gannoun L; Calas M; Ancelin ML
    Novartis Found Symp; 1999; 226():74-83; discussion 82-8. PubMed ID: 10645539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phospholipid metabolism in Plasmodium-infected erythrocytes: guidelines for further studies using radioactive precursor incorporation.
    Vial HJ; Ancelin ML; Thuet MJ; Philippot JR
    Parasitology; 1989 Jun; 98 Pt 3():351-7. PubMed ID: 2505213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biochemical characterization of Plasmodium falciparum CTP:phosphoethanolamine cytidylyltransferase shows that only one of the two cytidylyltransferase domains is active.
    Maheshwari S; Lavigne M; Contet A; Alberge B; Pihan E; Kocken C; Wengelnik K; Douguet D; Vial H; Cerdan R
    Biochem J; 2013 Feb; 450(1):159-67. PubMed ID: 23198904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antimalarial drugs and drug targets specific to fatty acid metabolic pathway of Plasmodium falciparum.
    Qidwai T; Khan F
    Chem Biol Drug Des; 2012 Aug; 80(2):155-72. PubMed ID: 22487082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Plasma and erythrocyte membrane phospholipids in children with Plasmodium falciparum malaria: relation to blood parasite counts and lactate levels].
    Abessolo FO; Nguélé JC; Legault E; Ngou-Milama E
    Sante; 2009; 19(1):39-42. PubMed ID: 19801351
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Altered plasma membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes.
    Schwartz RS; Olson JA; Raventos-Suarez C; Yee M; Heath RH; Lubin B; Nagel RL
    Blood; 1987 Feb; 69(2):401-7. PubMed ID: 3542079
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of phosphatidylserine synthase in shaping the phospholipidome of Candida albicans.
    Cassilly CD; Farmer AT; Montedonico AE; Smith TK; Campagna SR; Reynolds TB
    FEMS Yeast Res; 2017 Mar; 17(2):. PubMed ID: 28158422
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of phosphatidylserine decarboxylase in brain phospholipid metabolism.
    Butler M; Morell P
    J Neurochem; 1983 Nov; 41(5):1445-54. PubMed ID: 6413658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting malaria parasite proteins to the erythrocyte.
    Templeton TJ; Deitsch KW
    Trends Parasitol; 2005 Sep; 21(9):399-402. PubMed ID: 16046185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.