BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29853637)

  • 1. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer.
    Pedrote MM; de Oliveira GAP; Felix AL; Mota MF; Marques MA; Soares IN; Iqbal A; Norberto DR; Gomes AMO; Gratton E; Cino EA; Silva JL
    J Biol Chem; 2018 Jul; 293(29):11374-11387. PubMed ID: 29853637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain.
    Kovachev PS; Banerjee D; Rangel LP; Eriksson J; Pedrote MM; Martins-Dinis MMDC; Edwards K; Cordeiro Y; Silva JL; Sanyal S
    J Biol Chem; 2017 Jun; 292(22):9345-9357. PubMed ID: 28420731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical characterization of p53 core domain aggregates.
    Lima I; Navalkar A; Maji SK; Silva JL; de Oliveira GAP; Cino EA
    Biochem J; 2020 Jan; 477(1):111-120. PubMed ID: 31841126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure.
    Bom AP; Freitas MS; Moreira FS; Ferraz D; Sanches D; Gomes AM; Valente AP; Cordeiro Y; Silva JL
    J Biol Chem; 2010 Jan; 285(4):2857-66. PubMed ID: 19933157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible aggregation plays a crucial role on the folding landscape of p53 core domain.
    Ishimaru D; Lima LM; Maia LF; Lopez PM; Ano Bom AP; Valente AP; Silva JL
    Biophys J; 2004 Oct; 87(4):2691-700. PubMed ID: 15298872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation.
    Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL
    Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations.
    Li L; Li X; Tang Y; Lao Z; Lei J; Wei G
    Phys Chem Chem Phys; 2020 May; 22(17):9225-9232. PubMed ID: 32307496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer.
    Silva JL; Cino EA; Soares IN; Ferreira VF; A P de Oliveira G
    Acc Chem Res; 2018 Jan; 51(1):181-190. PubMed ID: 29260852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation.
    Lei J; Cai M; Shen Y; Lin D; Deng X
    Phys Chem Chem Phys; 2021 Oct; 23(40):23032-23041. PubMed ID: 34612239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant.
    Ishimaru D; Maia LF; Maiolino LM; Quesado PA; Lopez PC; Almeida FC; Valente AP; Silva JL
    J Mol Biol; 2003 Oct; 333(2):443-51. PubMed ID: 14529628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrillar aggregates of the tumor suppressor p53 core domain.
    Ishimaru D; Andrade LR; Teixeira LS; Quesado PA; Maiolino LM; Lopez PM; Cordeiro Y; Costa LT; Heckl WM; Weissmüller G; Foguel D; Silva JL
    Biochemistry; 2003 Aug; 42(30):9022-7. PubMed ID: 12885235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of a de novo designed native-like four-helix bundle protein.
    Chapeaurouge A; Johansson JS; Ferreira ST
    J Biol Chem; 2002 May; 277(19):16478-83. PubMed ID: 11832477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance of Amorphous and Amyloid-Like Aggregates of the p53 Core Domain to Loss of its DNA-Binding Activity.
    Hibino E; Tenno T; Hiroaki H
    Front Mol Biosci; 2022; 9():869851. PubMed ID: 35558561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanidinium chloride-induced spectral perturbations of 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid confound interpretation of data on molten globule states.
    Zakharov MN; Ulloor J; Bhasin S; Ross JA; Narula NS; Bakhit M; Pillai BK; Kumar R; Jameson DM; Jasuja R
    Anal Biochem; 2011 Sep; 416(1):126-8. PubMed ID: 21569754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds.
    Cino EA; Soares IN; Pedrote MM; de Oliveira GA; Silva JL
    Sci Rep; 2016 Sep; 6():32535. PubMed ID: 27600721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer.
    Ano Bom AP; Rangel LP; Costa DC; de Oliveira GA; Sanches D; Braga CA; Gava LM; Ramos CH; Cepeda AO; Stumbo AC; De Moura Gallo CV; Cordeiro Y; Silva JL
    J Biol Chem; 2012 Aug; 287(33):28152-62. PubMed ID: 22715097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloidogenicity of p53: a hidden link between protein misfolding and cancer.
    Gong H; Yang X; Zhao Y; Petersen RB; Liu X; Liu Y; Huang K
    Curr Protein Pept Sci; 2015; 16(2):135-46. PubMed ID: 25692950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature.
    Martins SM; Chapeaurouge A; Ferreira ST
    J Biol Chem; 2003 Dec; 278(50):50449-55. PubMed ID: 14525996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistate unfolding of α-mannosidase from Canavalia ensiformis (Jack Bean): evidence for the thermostable molten globule.
    Kumar A; Gaikwad SM
    Biochem Biophys Res Commun; 2010 Dec; 403(3-4):391-7. PubMed ID: 21087596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor.
    Silva JL; Rangel LP; Costa DC; Cordeiro Y; De Moura Gallo CV
    Biosci Rep; 2013 Jul; 33(4):. PubMed ID: 24003888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.