These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 29853656)
1. Genotyping by Sequencing of 393 Kong W; Kim C; Zhang D; Guo H; Tan X; Jin H; Zhou C; Shuang LS; Goff V; Sezen U; Pierce G; Compton R; Lemke C; Robertson J; Rainville L; Auckland S; Paterson AH G3 (Bethesda); 2018 Jul; 8(8):2563-2572. PubMed ID: 29853656 [TBL] [Abstract][Full Text] [Related]
2. Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population. Bouchet S; Olatoye MO; Marla SR; Perumal R; Tesso T; Yu J; Tuinstra M; Morris GP Genetics; 2017 Jun; 206(2):573-585. PubMed ID: 28592497 [TBL] [Abstract][Full Text] [Related]
3. Digital genotyping of sorghum - a diverse plant species with a large repeat-rich genome. Morishige DT; Klein PE; Hilley JL; Sahraeian SM; Sharma A; Mullet JE BMC Genomics; 2013 Jul; 14():448. PubMed ID: 23829350 [TBL] [Abstract][Full Text] [Related]
4. Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum ( Ongom PO; Ejeta G G3 (Bethesda); 2018 Jan; 8(1):331-341. PubMed ID: 29150594 [TBL] [Abstract][Full Text] [Related]
6. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Shiringani AL; Frisch M; Friedt W Theor Appl Genet; 2010 Jul; 121(2):323-36. PubMed ID: 20229249 [TBL] [Abstract][Full Text] [Related]
7. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. Higgins RH; Thurber CS; Assaranurak I; Brown PJ G3 (Bethesda); 2014 Sep; 4(9):1593-602. PubMed ID: 25237111 [TBL] [Abstract][Full Text] [Related]
9. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. Kajiya-Kanegae H; Takanashi H; Fujimoto M; Ishimori M; Ohnishi N; Wacera W F; Omollo EA; Kobayashi M; Yano K; Nakano M; Kozuka T; Kusaba M; Iwata H; Tsutsumi N; Sakamoto W Plant Cell Physiol; 2020 Jul; 61(7):1262-1272. PubMed ID: 32353144 [TBL] [Abstract][Full Text] [Related]
10. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor. Liu H; Liu H; Zhou L; Lin Z Plant Sci; 2019 Jun; 283():135-146. PubMed ID: 31128683 [TBL] [Abstract][Full Text] [Related]
11. Quantitative trait mapping of plant architecture in two BC Kong W; Nabukalu P; Cox TS; Goff VH; Robertson JS; Pierce GJ; Lemke C; Compton R; Paterson AH Theor Appl Genet; 2021 Apr; 134(4):1185-1200. PubMed ID: 33423085 [TBL] [Abstract][Full Text] [Related]
12. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum. Gelli M; Konda AR; Liu K; Zhang C; Clemente TE; Holding DR; Dweikat IM BMC Plant Biol; 2017 Jul; 17(1):123. PubMed ID: 28697783 [TBL] [Abstract][Full Text] [Related]
13. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065 [TBL] [Abstract][Full Text] [Related]
14. Genetic Analysis of Stem Diameter and Water Contents To Improve Sorghum Bioenergy Efficiency. Kong W; Jin H; Goff VH; Auckland SA; Rainville LK; Paterson AH G3 (Bethesda); 2020 Nov; 10(11):3991-4000. PubMed ID: 32907818 [TBL] [Abstract][Full Text] [Related]
15. Genetic analysis of rhizomatousness and its relationship with vegetative branching of recombinant inbred lines of Sorghum bicolor × S. propinquum. Kong W; Kim C; Goff VH; Zhang D; Paterson AH Am J Bot; 2015 May; 102(5):718-24. PubMed ID: 26022486 [TBL] [Abstract][Full Text] [Related]
16. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). Wang B; Liu H; Liu Z; Dong X; Guo J; Li W; Chen J; Gao C; Zhu Y; Zheng X; Chen Z; Chen J; Song W; Hauck A; Lai J BMC Plant Biol; 2018 Jan; 18(1):17. PubMed ID: 29347909 [TBL] [Abstract][Full Text] [Related]
17. Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Mace ES; Hunt CH; Jordan DR Theor Appl Genet; 2013 May; 126(5):1377-95. PubMed ID: 23459955 [TBL] [Abstract][Full Text] [Related]
18. Development and characterization of a sorghum multi-parent advanced generation intercross (MAGIC) population for capturing diversity among seed parent gene pool. Kumar N; Boatwright JL; Brenton ZW; Sapkota S; Ballén-Taborda C; Myers MT; Cox WA; Jordan KE; Kresovich S; Boyles RE G3 (Bethesda); 2023 Apr; 13(4):. PubMed ID: 36755443 [TBL] [Abstract][Full Text] [Related]
19. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. Zou G; Zhai G; Feng Q; Yan S; Wang A; Zhao Q; Shao J; Zhang Z; Zou J; Han B; Tao Y J Exp Bot; 2012 Sep; 63(15):5451-62. PubMed ID: 22859680 [TBL] [Abstract][Full Text] [Related]
20. The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses. Cuevas HE; Zhou C; Tang H; Khadke PP; Das S; Lin YR; Ge Z; Clemente T; Upadhyaya HD; Hash CT; Paterson AH Mol Biol Evol; 2016 Sep; 33(9):2417-28. PubMed ID: 27335143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]