BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29853852)

  • 21. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.
    Zhu L; Wu G; Zhou X; Li J; Wen Z; Lin F
    PLoS One; 2015; 10(3):e0118816. PubMed ID: 25768010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.
    Bajaj S; Butler AJ; Drake D; Dhamala M
    Neuroimage Clin; 2015; 8():572-82. PubMed ID: 26236627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention.
    Sacco K; Cauda F; D'Agata F; Mate D; Duca S; Geminiani G
    Brain Res; 2009 Nov; 1297():124-34. PubMed ID: 19703428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study.
    Sabbah P; de SS; Leveque C; Gay S; Pfefer F; Nioche C; Sarrazin JL; Barouti H; Tadie M; Cordoliani YS
    J Neurotrauma; 2002 Jan; 19(1):53-60. PubMed ID: 11852978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motor imagery evokes strengthened activation in sensorimotor areas and its effective connectivity related to cognitive regions in patients with complete spinal cord injury.
    Wang L; Li X; Zheng W; Chen X; Chen Q; Hu Y; Cao L; Ren J; Qin W; Lu J; Chen N
    Brain Imaging Behav; 2022 Oct; 16(5):2049-2060. PubMed ID: 35994188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy.
    Müller-Putz GR; Daly I; Kaiser V
    J Neural Eng; 2014 Jun; 11(3):035011. PubMed ID: 24835837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of grasping after motor imagery in C6-C7 tetraplegia: A kinematic and MEG pilot study.
    Mateo S; Di Rienzo F; Reilly KT; Revol P; Delpuech C; Daligault S; Guillot A; Jacquin-Courtois S; Luauté J; Rossetti Y; Collet C; Rode G
    Restor Neurol Neurosci; 2015; 33(4):543-55. PubMed ID: 26409412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury.
    Wang L; Zheng WM; Liang TF; Yang YH; Yang BN; Chen X; Chen Q; Li XJ; Lu J; Li BW; Chen N
    AJNR Am J Neuroradiol; 2023 May; 44(5):611-617. PubMed ID: 37080724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complex motor representations may not be preserved after complete spinal cord injury.
    Olsson CJ
    Exp Neurol; 2012 Jul; 236(1):46-9. PubMed ID: 22504114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Similarities between explicit and implicit motor imagery in mental rotation of hands: an EEG study.
    Osuagwu BA; Vuckovic A
    Neuropsychologia; 2014 Dec; 65():197-210. PubMed ID: 25446966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical plasticity after brachial plexus injury and repair: a resting-state functional MRI study.
    Bhat DI; Indira Devi B; Bharti K; Panda R
    Neurosurg Focus; 2017 Mar; 42(3):E14. PubMed ID: 28245732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale topological properties of functional brain networks during motor imagery after stroke.
    De Vico Fallani F; Pichiorri F; Morone G; Molinari M; Babiloni F; Cincotti F; Mattia D
    Neuroimage; 2013 Dec; 83():438-49. PubMed ID: 23791916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury.
    Gustin SM; Wrigley PJ; Siddall PJ; Henderson LA
    Cereb Cortex; 2010 Jun; 20(6):1409-19. PubMed ID: 19815621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. What disconnection tells about motor imagery: evidence from paraplegic patients.
    Alkadhi H; Brugger P; Boendermaker SH; Crelier G; Curt A; Hepp-Reymond MC; Kollias SS
    Cereb Cortex; 2005 Feb; 15(2):131-40. PubMed ID: 15238440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of the cortical connectivity patterns during the intention of limb movements.
    Astolfi L; Cincotti F; Mattia D; De Vico Fallani F; Salinari S; Ursino M; Zavaglia M; Marciani MG; Babiloni F
    IEEE Eng Med Biol Mag; 2006; 25(4):32-8. PubMed ID: 16898656
    [No Abstract]   [Full Text] [Related]  

  • 37. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: a resting-state fMRI study.
    Rao JS; Ma M; Zhao C; Zhang AF; Yang ZY; Liu Z; Li XG
    Magn Reson Imaging; 2014 Jun; 32(5):482-6. PubMed ID: 24629510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in Brain Resting-state Functional Connectivity Associated with Peripheral Nerve Block: A Pilot Study.
    Melton MS; Browndyke JN; Harshbarger TB; Madden DJ; Nielsen KC; Klein SM
    Anesthesiology; 2016 Aug; 125(2):368-77. PubMed ID: 27272674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor Control of Human Spinal Cord Disconnected from the Brain and Under External Movement.
    Mayr W; Krenn M; Dimitrijevic MR
    Adv Exp Med Biol; 2016; 957():159-171. PubMed ID: 28035565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural network underlying visuospatial imagery in humans.
    Whittingstall K; Bernier M; Houde JC; Fortin D; Descoteaux M
    Cortex; 2014 Jul; 56():85-98. PubMed ID: 23514930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.