These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2985386)

  • 21. The mechanism by which glucose increases fructose 2,6-bisphosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2.
    François J; Van Schaftingen E; Hers HG
    Eur J Biochem; 1984 Nov; 145(1):187-93. PubMed ID: 6092080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of rabbit muscle phosphorylase phosphatase by cyclic AMP-dependent kinas.
    Huang FL; Glinsmann WH
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3004-8. PubMed ID: 171649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partial purification and some kinetic properties of glucose-6-phosphate dehydrogenase from Phycomyces blakesleeanus.
    de Arriaga D; Montero S; Busto F; Soler J
    Biochimie; 1986 Mar; 68(2):291-302. PubMed ID: 3089321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Activation of spore homogenates by heat treatment. VII. Contribution to the causal analysis of heat activation of spores of Phycomyces blakesleeanus].
    Rudolph H; Furch B
    Arch Mikrobiol; 1970; 72(2):175-81. PubMed ID: 5469572
    [No Abstract]   [Full Text] [Related]  

  • 25. Trehalose metabolism in dormant and activated spores of Phycomyces blakesleeanus Burgeff.
    Van Assche JA; Van Laere AJ; Carlier AR
    Planta; 1978 Jan; 139(2):171-6. PubMed ID: 24414158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The formation of sporangiospores in Phycomyces.
    Tu JC; Malhotra SK
    Microbios; 1976; 15(59):15-25. PubMed ID: 979660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fructose-2,6-bisphosphatase and 6-phosphofructo-2-kinase are separable in yeast.
    Kretschmer M; Schellenberger W; Otto A; Kessler R; Hofmann E
    Biochem J; 1987 Sep; 246(3):755-9. PubMed ID: 2825652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trehalase activity in dormant and activated spores of Phycomyces blakesleeanus.
    Van Assche JA; Carlier AR; Dekeersmaeker HI
    Planta; 1972 Dec; 103(4):327-33. PubMed ID: 24481612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible phosphorylation and inactivation of acetyl-CoA carboxylase from lactating rat mammary gland by cyclic AMP-dependent protein kinase.
    Hardie DG; Guy PS
    Eur J Biochem; 1980 Sep; 110(1):167-77. PubMed ID: 6108209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A method for the selection of mutants of Phycomyces blakesleeanus defective in germination.
    Micol JL; Murillo FJ
    Curr Genet; 1986; 10(10):749-53. PubMed ID: 3447735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen regulation of alternative respiration in fungus Phycomyces blakesleeanus: connection with phosphate metabolism.
    Stanić M; Zakrzewska J; Hadžibrahimović M; Zižić M; Marković Z; Vučinić Z; Zivić M
    Res Microbiol; 2013 Sep; 164(7):770-8. PubMed ID: 23542427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ATP, Mg-dependent phosphatase: role of Mg ions in the expression of the phosphorylase phosphatase activity.
    Vandenheede JR; Vanden Abeele CC; Merlevede W
    Biochem Biophys Res Commun; 1986 Apr; 136(1):16-21. PubMed ID: 3010962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and properties of phosphofructokinase 2/fructose 2,6-bisphosphatase from chicken liver and from pigeon muscle.
    Van Schaftingen E; Hers HG
    Eur J Biochem; 1986 Sep; 159(2):359-65. PubMed ID: 3019688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation and biosynthesis of D-erythroascorbic acid in Phycomyces blakesleeanus.
    Baroja-Mazo A; del Valle P; Rúa J; de Cima S; Busto F; de Arriaga D; Smirnoff N
    Fungal Genet Biol; 2005 May; 42(5):390-402. PubMed ID: 15809004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactate dehydrogenase in Phycomyces blakesleeanus.
    Soler J; De Arriaga D; Busto F; Cadenas E
    Biochem J; 1982 May; 203(2):383-91. PubMed ID: 7115293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae.
    Vandercammen A; François J; Hers HG
    Eur J Biochem; 1989 Jul; 182(3):613-20. PubMed ID: 2546763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae.
    Neves MJ; François J
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):859-64. PubMed ID: 1335235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein conformational change or membrane phase transition as the underlying mechanism of fungal spore heat activation [proceedings].
    Thevelein JM; Van Assche JA; Heremans K
    Arch Int Physiol Biochim; 1979 Dec; 87(5):1013-4. PubMed ID: 94788
    [No Abstract]   [Full Text] [Related]  

  • 39. Purification and properties of NAD-dependent glutamate dehydrogenase from Phycomyces spores.
    Van Laere AJ
    J Gen Microbiol; 1988 Jun; 134(6):1597-601. PubMed ID: 3221200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stereospecific analysis of major glycerolipids of Phycomyces blakesleeanus sporangiophores and mycelium.
    DeBell RM; Jack RC
    J Bacteriol; 1975 Oct; 124(1):220-4. PubMed ID: 1176431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.