These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29853992)

  • 1. Analysis of the Mechanical Properties of the Human Tympanic Membrane and Its Influence on the Dynamic Behaviour of the Human Hearing System.
    Caminos L; Garcia-Manrique J; Lima-Rodriguez A; Gonzalez-Herrera A
    Appl Bionics Biomech; 2018; 2018():1736957. PubMed ID: 29853992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does prestrain in the tympanic membrane affect middle-ear function? A finite-element model study in rabbit.
    Muyshondt PGG; Dirckx JJJ
    J Mech Behav Biomed Mater; 2022 Jul; 131():105261. PubMed ID: 35561598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the Young's modulus distribution of the human tympanic membrane by microindentation.
    Luo H; Wang F; Cheng C; Nakmali DU; Gan RZ; Lu H
    Hear Res; 2019 Jul; 378():75-91. PubMed ID: 30853348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation.
    Daphalapurkar NP; Dai C; Gan RZ; Lu H
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):82-92. PubMed ID: 19627811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical model characterization of the sound transmission mechanism in the tympanic membrane from a high-speed digital holographic experiment in transient regime.
    Garcia-Manrique J; Furlong C; Gonzalez-Herrera A; Cheng JT
    Acta Biomater; 2023 Mar; 159():63-73. PubMed ID: 36708849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model.
    O'Connor KN; Cai H; Puria S
    J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of the Papio anubis tympanic membrane: Change significantly from infancy to adulthood.
    Liang J; Smith KD; Lu H; Seale TW; Gan RZ
    Hear Res; 2018 Dec; 370():143-154. PubMed ID: 30388572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of young's modulus of human tympanic membrane at high strain rates.
    Luo H; Dai C; Gan RZ; Lu H
    J Biomech Eng; 2009 Jun; 131(6):064501. PubMed ID: 19449971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of blast overpressure on the mechanical properties of the human tympanic membrane.
    Liang J; Smith KD; Gan RZ; Lu H
    J Mech Behav Biomed Mater; 2019 Dec; 100():103368. PubMed ID: 31473437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
    Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM
    Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single-ossicle ear: Acoustic response and mechanical properties measured in duck.
    Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ
    Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of blast overpressure on the mechanical properties of a chinchilla tympanic membrane.
    Liang J; Yokell ZA; Nakmaili DU; Gan RZ; Lu H
    Hear Res; 2017 Oct; 354():48-55. PubMed ID: 28866319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Properties of Human Tympanic Membrane After Exposure to Blast Waves.
    Engles WG; Wang X; Gan RZ
    Ann Biomed Eng; 2017 Oct; 45(10):2383-2394. PubMed ID: 28634733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prestrain in the rabbit eardrum measured by digital image correlation and micro-incisions.
    Livens P; Muyshondt PGG; Dirckx JJJ
    Hear Res; 2021 Dec; 412():108392. PubMed ID: 34800801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three approaches for estimating the elastic modulus of the tympanic membrane.
    Fay J; Puria S; Decraemer WF; Steele C
    J Biomech; 2005 Sep; 38(9):1807-15. PubMed ID: 16023467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection.
    Liang J; Luo H; Yokell Z; Nakmali DU; Gan RZ; Lu H
    Hear Res; 2016 Sep; 339():1-11. PubMed ID: 27240479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics.
    De Greef D; Pires F; Dirckx JJ
    Hear Res; 2017 Feb; 344():195-206. PubMed ID: 27915026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography.
    Khaleghi M; Furlong C; Ravicz M; Cheng JT; Rosowski JJ
    J Biomed Opt; 2015 May; 20(5):051028. PubMed ID: 25652791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.