These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29854226)

  • 1. Utilizing Smartphone-Based Machine Learning in Medical Monitor Data Collection: Seven Segment Digit Recognition.
    Shenoy VN; Aalami OO
    AMIA Annu Symp Proc; 2017; 2017():1564-1570. PubMed ID: 29854226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors.
    Finnegan E; Villarroel M; Velardo C; Tarassenko L
    J Med Eng Technol; 2019 Aug; 43(6):341-355. PubMed ID: 31679409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
    Li P; Wang Y; Tian Y; Zhou TS; Li JS
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):706-714. PubMed ID: 27249822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity Recognition for Diabetic Patients Using a Smartphone.
    Cvetković B; Janko V; Romero AE; Kafalı Ö; Stathis K; Luštrek M
    J Med Syst; 2016 Dec; 40(12):256. PubMed ID: 27722975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Smartphones for Health Research.
    Dorsey ER; Yvonne Chan YF; McConnell MV; Shaw SY; Trister AD; Friend SH
    Acad Med; 2017 Feb; 92(2):157-160. PubMed ID: 27119325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Smart Mobile Data Module for Fetal Monitoring in E-Healthcare.
    Houzé de l'Aulnoit A; Boudet S; Génin M; Gautier PF; Schiro J; Houzé de l'Aulnoit D; Beuscart R
    J Med Syst; 2018 Mar; 42(5):83. PubMed ID: 29572752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive Hemoglobin Level Prediction in a Mobile Phone Environment: State of the Art Review and Recommendations.
    Hasan MK; Aziz MH; Zarif MII; Hasan M; Hashem M; Guha S; Love RR; Ahamed S
    JMIR Mhealth Uhealth; 2021 Apr; 9(4):e16806. PubMed ID: 33830065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigating Virtual Environments Using Leg Poses and Smartphone Sensors.
    Tsaramirsis G; Buhari SM; Basheri M; Stojmenovic M
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Smartphones to Estimate Carbohydrates in Foods for Diabetes Management.
    Huang J; Ding H; McBride S; Ireland D; Karunanithi M
    Stud Health Technol Inform; 2015; 214():121-7. PubMed ID: 26210428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Energy-Efficient Multi-Tier Architecture for Fall Detection Using Smartphones.
    Guvensan MA; Kansiz AO; Camgoz NC; Turkmen HI; Yavuz AG; Karsligil ME
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone application for emergency signal detection.
    Figueiredo IN; Leal C; Pinto L; Bolito J; Lemos A
    Med Eng Phys; 2016 Sep; 38(9):1021-7. PubMed ID: 27264240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of smartphone application to monitor heart rate.
    Yakel JP; Meacham KJ; Glave AP; Didier JJ; Williams ML; Waters C; Cole M; Feren E
    J Sports Med Phys Fitness; 2019 Aug; 59(8):1281-1284. PubMed ID: 31373188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms.
    Udrea A; Mitra GD; Costea D; Noels EC; Wakkee M; Siegel DM; de Carvalho TM; Nijsten TEC
    J Eur Acad Dermatol Venereol; 2020 Mar; 34(3):648-655. PubMed ID: 31494983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart(phone) Learning Experience Among Vascular Trainees Using a Response System Application.
    Al-Jundi W; Kayssi A; Papia G; Dueck A
    J Surg Educ; 2017; 74(4):638-643. PubMed ID: 28130100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of smartphone application-based vital sign monitors without external hardware versus those used in clinical practice: a prospective trial.
    Alexander JC; Minhajuddin A; Joshi GP
    J Clin Monit Comput; 2017 Aug; 31(4):825-831. PubMed ID: 27170014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceptions of Smartphone User-Centered Mobile Health Tracking Apps Across Various Chronic Illness Populations: An Integrative Review.
    Birkhoff SD; Smeltzer SC
    J Nurs Scholarsh; 2017 Jul; 49(4):371-378. PubMed ID: 28605151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study.
    Fu J; Jones M; Liu T; Hao W; Yan Y; Qian G; Jan YK
    Assist Technol; 2016; 28(2):105-14. PubMed ID: 26479684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictors of students' self-reported adoption of a smartphone application for medical education in general practice.
    Sandholzer M; Deutsch T; Frese T; Winter A
    BMC Med Educ; 2015 May; 15():91. PubMed ID: 25994310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Snap-n-Eat": Food Recognition and Nutrition Estimation on a Smartphone.
    Zhang W; Yu Q; Siddiquie B; Divakaran A; Sawhney H
    J Diabetes Sci Technol; 2015 May; 9(3):525-33. PubMed ID: 25901024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone Application for Structural Health Monitoring of Bridges.
    Figueiredo E; Moldovan I; Alves P; Rebelo H; Souza L
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.