BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29854782)

  • 1. Biomechanical, Biochemical, and Cell Biological Evaluation of Different Collagen Scaffolds for Tendon Augmentation.
    Gabler C; Spohn J; Tischer T; Bader R
    Biomed Res Int; 2018; 2018():7246716. PubMed ID: 29854782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons.
    Ghodbane SA; Dunn MG
    J Biomed Mater Res A; 2016 Nov; 104(11):2685-92. PubMed ID: 27325579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Award Winner in the Young Investigator Category, 2014 Society for Biomaterials Annual Meeting and Exposition, Denver, Colorado, April 16-19, 2014: Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties.
    Caliari SR; Mozdzen LC; Armitage O; Oyen ML; Harley BA
    J Biomed Mater Res A; 2014 Apr; 102(4):917-27. PubMed ID: 24327556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human flexor tendon tissue engineering: revitalization of biostatic allograft scaffolds.
    Woon CY; Farnebo S; Schmitt T; Kraus A; Megerle K; Pham H; Yan X; Gambhir SS; Chang J
    Tissue Eng Part A; 2012 Dec; 18(23-24):2406-17. PubMed ID: 22712522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.
    Xu Y; Dong S; Zhou Q; Mo X; Song L; Hou T; Wu J; Li S; Li Y; Li P; Gan Y; Xu J
    Biomaterials; 2014 Mar; 35(9):2760-72. PubMed ID: 24411676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration.
    Shen W; Chen X; Chen J; Yin Z; Heng BC; Chen W; Ouyang HW
    Biomaterials; 2010 Oct; 31(28):7239-49. PubMed ID: 20615544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells.
    Chen E; Yang L; Ye C; Zhang W; Ran J; Xue D; Wang Z; Pan Z; Hu Q
    Acta Biomater; 2018 Jun; 73():377-387. PubMed ID: 29678676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexor tendon tissue engineering: acellularization of human flexor tendons with preservation of biomechanical properties and biocompatibility.
    Pridgen BC; Woon CY; Kim M; Thorfinn J; Lindsey D; Pham H; Chang J
    Tissue Eng Part C Methods; 2011 Aug; 17(8):819-28. PubMed ID: 21548795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Evaluation of Different Collagen Scaffolds in an Achilles Tendon Defect Model.
    Gabler C; Saß JO; Gierschner S; Lindner T; Bader R; Tischer T
    Biomed Res Int; 2018; 2018():6432742. PubMed ID: 30175138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biocompatibility study on tendon mixed extraction of bovine collagen for periodontal tissue engineering].
    Luo K; Yan F; Jin Y; Liu Y; Wang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):234-7. PubMed ID: 15828483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.
    Parenteau-Bareil R; Gauvin R; Cliche S; Gariépy C; Germain L; Berthod F
    Acta Biomater; 2011 Oct; 7(10):3757-65. PubMed ID: 21723967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun PCL/Gel-aligned scaffolds enhance the biomechanical strength in tendon repair.
    Sheng D; Li J; Ai C; Feng S; Ying T; Liu X; Cai J; Ding X; Jin W; Xu H; Chen J; Chen S
    J Mater Chem B; 2019 Aug; 7(31):4801-4810. PubMed ID: 31389951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells.
    Camasão DB; Pezzoli D; Loy C; Kumra H; Levesque L; Reinhardt DP; Candiani G; Mantovani D
    Biotechnol J; 2019 Mar; 14(3):e1700768. PubMed ID: 29802760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering.
    Caliari SR; Ramirez MA; Harley BA
    Biomaterials; 2011 Dec; 32(34):8990-8. PubMed ID: 21880362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer aided biomanufacturing of mechanically robust pure collagen meshes with controlled macroporosity.
    Islam A; Chapin K; Younesi M; Akkus O
    Biofabrication; 2015 Jul; 7(3):035005. PubMed ID: 26200002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of animal species, gender and tissue on the structural, biophysical, biochemical and biological properties of collagen sponges.
    Sorushanova A; Skoufos I; Tzora A; Mullen AM; Zeugolis DI
    J Mater Sci Mater Med; 2021 Jan; 32(1):12. PubMed ID: 33475864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and preclinical characterisation of compressed, macro-porous and collagen coated poly-ε-caprolactone electro-spun scaffolds.
    Fuller KP; Gaspar D; Delgado LM; Shoseyov O; Zeugolis DI
    Biomed Mater; 2019 Jul; 14(5):055007. PubMed ID: 31269477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering.
    Vuornos K; Björninen M; Talvitie E; Paakinaho K; Kellomäki M; Huhtala H; Miettinen S; Seppänen-Kaijansinkko R; Haimi S
    Tissue Eng Part A; 2016 Mar; 22(5-6):513-23. PubMed ID: 26919401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds.
    Samourides A; Browning L; Hearnden V; Chen B
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model.
    Webb WR; Dale TP; Lomas AJ; Zeng G; Wimpenny I; El Haj AJ; Forsyth NR; Chen GQ
    Biomaterials; 2013 Sep; 34(28):6683-94. PubMed ID: 23768899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.