These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29855089)

  • 1. Recent Advances in Materials, Devices, and Systems for Neural Interfaces.
    Won SM; Song E; Zhao J; Li J; Rivnay J; Rogers JA
    Adv Mater; 2018 Jul; 30(30):e1800534. PubMed ID: 29855089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials and Designs for Power Supply Systems in Skin-Interfaced Electronics.
    Li J; Zhao J; Rogers JA
    Acc Chem Res; 2019 Jan; 52(1):53-62. PubMed ID: 30525449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Electrodes for Bioelectronics.
    Cho YH; Park YG; Kim S; Park JU
    Adv Mater; 2021 Nov; 33(47):e2005805. PubMed ID: 34013548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Ti
    Driscoll N; Richardson AG; Maleski K; Anasori B; Adewole O; Lelyukh P; Escobedo L; Cullen DK; Lucas TH; Gogotsi Y; Vitale F
    ACS Nano; 2018 Oct; 12(10):10419-10429. PubMed ID: 30207690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Materials for flexible bioelectronic systems as chronic neural interfaces.
    Song E; Li J; Won SM; Bai W; Rogers JA
    Nat Mater; 2020 Jun; 19(6):590-603. PubMed ID: 32461684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.
    Li J; Song E; Chiang CH; Yu KJ; Koo J; Du H; Zhong Y; Hill M; Wang C; Zhang J; Chen Y; Tian L; Zhong Y; Fang G; Viventi J; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9542-E9549. PubMed ID: 30228119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugated Polymers in Bioelectronics.
    Inal S; Rivnay J; Suiu AO; Malliaras GG; McCulloch I
    Acc Chem Res; 2018 Jun; 51(6):1368-1376. PubMed ID: 29874033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Approaches Toward Smart Bio-hybrid Systems.
    Luo Z; Weiss DE; Liu Q; Tian B
    Nano Res; 2018 Jun; 11(6):3009-3030. PubMed ID: 30906509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro- and nanotechnology for neural electrode-tissue interfaces.
    Liu S; Zhao Y; Hao W; Zhang XD; Ming D
    Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices.
    Sung C; Jeon W; Nam KS; Kim Y; Butt H; Park S
    J Mater Chem B; 2020 Aug; 8(31):6624-6666. PubMed ID: 32567626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of microstructured scaffolds, neurons, and multielectrode arrays.
    Simi A; Amin H; Maccione A; Nieus T; Berdondini L
    Prog Brain Res; 2014; 214():415-42. PubMed ID: 25410367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Formation of Porous Pt Nanorods for Highly Electrochemically Efficient Neural Electrode Interfaces.
    Ganji M; Paulk AC; Yang JC; Vahidi NW; Lee SH; Liu R; Hossain L; Arneodo EM; Thunemann M; Shigyo M; Tanaka A; Ryu SB; Lee SW; Tchoe Y; Marsala M; Devor A; Cleary DR; Martin JR; Oh H; Gilja V; Gentner TQ; Fried SI; Halgren E; Cash SS; Dayeh SA
    Nano Lett; 2019 Sep; 19(9):6244-6254. PubMed ID: 31369283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk-Based Advanced Materials for Soft Electronics.
    Wang C; Xia K; Zhang Y; Kaplan DL
    Acc Chem Res; 2019 Oct; 52(10):2916-2927. PubMed ID: 31536330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel bioelectronics.
    Yuk H; Lu B; Zhao X
    Chem Soc Rev; 2019 Mar; 48(6):1642-1667. PubMed ID: 30474663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress of electroactive interface in neural engineering.
    Shan Y; Cui X; Chen X; Li Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e01827. PubMed ID: 35715994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.