These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29855333)

  • 1. UMI-count modeling and differential expression analysis for single-cell RNA sequencing.
    Chen W; Li Y; Easton J; Finkelstein D; Wu G; Chen X
    Genome Biol; 2018 May; 19(1):70. PubMed ID: 29855333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scruff: an R/Bioconductor package for preprocessing single-cell RNA-sequencing data.
    Wang Z; Hu J; Johnson WE; Campbell JD
    BMC Bioinformatics; 2019 May; 20(1):222. PubMed ID: 31046658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers.
    Townes FW; Irizarry RA
    Genome Biol; 2020 Jul; 21(1):160. PubMed ID: 32620142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications.
    Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L
    Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SimCH: simulation of single-cell RNA sequencing data by modeling cellular heterogeneity at gene expression level.
    Sun L; Wang G; Zhang Z
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36575569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical methods for analysis of single-cell RNA-sequencing data.
    Das S; Rai SN
    MethodsX; 2021; 8():101580. PubMed ID: 35004214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level.
    Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2019 Jul; 35(14):i136-i144. PubMed ID: 31510649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.
    Rizzetto S; Eltahla AA; Lin P; Bull R; Lloyd AR; Ho JWK; Venturi V; Luciani F
    Sci Rep; 2017 Oct; 7(1):12781. PubMed ID: 28986563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.
    Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell RNA-seq denoising using a deep count autoencoder.
    Eraslan G; Simon LM; Mircea M; Mueller NS; Theis FJ
    Nat Commun; 2019 Jan; 10(1):390. PubMed ID: 30674886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular spikes: a gold standard for single-cell RNA counting.
    Ziegenhain C; Hendriks GJ; Hagemann-Jensen M; Sandberg R
    Nat Methods; 2022 May; 19(5):560-566. PubMed ID: 35468967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes.
    Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K
    Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.