These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Davidson YS; Barker H; Robinson AC; Thompson JC; Harris J; Troakes C; Smith B; Al-Saraj S; Shaw C; Rollinson S; Masuda-Suzukake M; Hasegawa M; Pickering-Brown S; Snowden JS; Mann DM Acta Neuropathol Commun; 2014 Jun; 2():70. PubMed ID: 24950788 [TBL] [Abstract][Full Text] [Related]
6. Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Mordes DA; Prudencio M; Goodman LD; Klim JR; Moccia R; Limone F; Pietilainen O; Chowdhary K; Dickson DW; Rademakers R; Bonini NM; Petrucelli L; Eggan K Acta Neuropathol Commun; 2018 Jul; 6(1):55. PubMed ID: 29973287 [TBL] [Abstract][Full Text] [Related]
7. Loss of Tmem106b exacerbates FTLD pathologies and causes motor deficits in progranulin-deficient mice. Zhou X; Brooks M; Jiang P; Koga S; Zuberi AR; Baker MC; Parsons TM; Castanedes-Casey M; Phillips V; Librero AL; Kurti A; Fryer JD; Bu G; Lutz C; Dickson DW; Rademakers R EMBO Rep; 2020 Oct; 21(10):e50197. PubMed ID: 32761777 [TBL] [Abstract][Full Text] [Related]
8. Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Lattante S; Le Ber I; Galimberti D; Serpente M; Rivaud-Péchoux S; Camuzat A; Clot F; Fenoglio C; ; Scarpini E; Brice A; Kabashi E Neurobiol Aging; 2014 Nov; 35(11):2658.e1-2658.e5. PubMed ID: 25085782 [TBL] [Abstract][Full Text] [Related]
9. Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency. Zhou X; Sun L; Brady OA; Murphy KA; Hu F Acta Neuropathol Commun; 2017 Jan; 5(1):9. PubMed ID: 28126008 [TBL] [Abstract][Full Text] [Related]
10. Tau pathology in frontotemporal lobar degeneration with C9ORF72 hexanucleotide repeat expansion. Bieniek KF; Murray ME; Rutherford NJ; Castanedes-Casey M; DeJesus-Hernandez M; Liesinger AM; Baker MC; Boylan KB; Rademakers R; Dickson DW Acta Neuropathol; 2013 Feb; 125(2):289-302. PubMed ID: 23053135 [TBL] [Abstract][Full Text] [Related]
11. The association between repeat number in C9orf72 and phenotypic variability in Turkish patients with frontotemporal lobar degeneration. Erzurumluoglu E; Cilingir O; Ozbabalik Adapinar BD; Bilgic B; Kocagil S; Ozen H; Durak Aras B; Yenilmez C; Artan S Neurobiol Aging; 2019 Apr; 76():216.e1-216.e7. PubMed ID: 30685122 [TBL] [Abstract][Full Text] [Related]
12. The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Cooper-Knock J; Shaw PJ; Kirby J Acta Neuropathol; 2014 Mar; 127(3):333-45. PubMed ID: 24493408 [TBL] [Abstract][Full Text] [Related]
13. Lack of a protective effect of the Tmem106b "protective SNP" in the Grn knockout mouse model for frontotemporal lobar degeneration. Cabron AS; Borgmeyer U; Richter J; Peisker H; Gutbrod K; Dörmann P; Capell A; Damme M Acta Neuropathol Commun; 2023 Jan; 11(1):21. PubMed ID: 36707901 [TBL] [Abstract][Full Text] [Related]
14. Expression of C9orf72 hexanucleotide repeat expansion leads to formation of RNA foci and dipeptide repeat proteins but does not influence autophagy or proteasomal function in neuronal cells. Leskelä S; Huber N; Hoffmann D; Rostalski H; Remes AM; Takalo M; Hiltunen M; Haapasalo A Biochim Biophys Acta Mol Cell Res; 2021 Jun; 1868(7):119021. PubMed ID: 33775797 [TBL] [Abstract][Full Text] [Related]
15. Viral delivery of Herranz-Martin S; Chandran J; Lewis K; Mulcahy P; Higginbottom A; Walker C; Valenzuela IMY; Jones RA; Coldicott I; Iannitti T; Akaaboune M; El-Khamisy SF; Gillingwater TH; Shaw PJ; Azzouz M Dis Model Mech; 2017 Jul; 10(7):859-868. PubMed ID: 28550099 [TBL] [Abstract][Full Text] [Related]
17. Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain. Busch JI; Martinez-Lage M; Ashbridge E; Grossman M; Van Deerlin VM; Hu F; Lee VM; Trojanowski JQ; Chen-Plotkin AS Acta Neuropathol Commun; 2013 Jul; 1():36. PubMed ID: 24252750 [TBL] [Abstract][Full Text] [Related]
18. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. Chen-Plotkin AS; Unger TL; Gallagher MD; Bill E; Kwong LK; Volpicelli-Daley L; Busch JI; Akle S; Grossman M; Van Deerlin V; Trojanowski JQ; Lee VM J Neurosci; 2012 Aug; 32(33):11213-27. PubMed ID: 22895706 [TBL] [Abstract][Full Text] [Related]
19. Loss of TMEM106B potentiates lysosomal and FTLD-like pathology in progranulin-deficient mice. Werner G; Damme M; Schludi M; Gnörich J; Wind K; Fellerer K; Wefers B; Wurst W; Edbauer D; Brendel M; Haass C; Capell A EMBO Rep; 2020 Oct; 21(10):e50241. PubMed ID: 32929860 [TBL] [Abstract][Full Text] [Related]
20. Molecular Mechanisms of Neurodegeneration Related to Babić Leko M; Župunski V; Kirincich J; Smilović D; Hortobágyi T; Hof PR; Šimić G Behav Neurol; 2019; 2019():2909168. PubMed ID: 30774737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]