These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
657 related articles for article (PubMed ID: 29855387)
1. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. Li Y; Shi W; Wasserman WW BMC Bioinformatics; 2018 May; 19(1):202. PubMed ID: 29855387 [TBL] [Abstract][Full Text] [Related]
2. The identification of cis-regulatory elements: A review from a machine learning perspective. Li Y; Chen CY; Kaye AM; Wasserman WW Biosystems; 2015 Dec; 138():6-17. PubMed ID: 26499213 [TBL] [Abstract][Full Text] [Related]
3. Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques. Cappelletti L; Petrini A; Gliozzo J; Casiraghi E; Schubach M; Kircher M; Valentini G BMC Bioinformatics; 2022 Dec; 23(Suppl 2):154. PubMed ID: 36510125 [TBL] [Abstract][Full Text] [Related]
4. Predicting enhancers with deep convolutional neural networks. Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068 [TBL] [Abstract][Full Text] [Related]
5. Prediction-based approaches to characterize bidirectional promoters in the mammalian genome. Yang MQ; Elnitski LL BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S2. PubMed ID: 18366609 [TBL] [Abstract][Full Text] [Related]
6. Chromatin accessibility prediction via a hybrid deep convolutional neural network. Liu Q; Xia F; Yin Q; Jiang R Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282 [TBL] [Abstract][Full Text] [Related]
7. Amplicon genome fishing (AGF): a rapid and efficient method for sequencing target cis-regulatory regions in nonmodel organisms. Gu H; Zhang P; Xu M; Liang D Mol Genet Genomics; 2021 May; 296(3):527-539. PubMed ID: 33797587 [TBL] [Abstract][Full Text] [Related]
8. A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Diao Y; Fang R; Li B; Meng Z; Yu J; Qiu Y; Lin KC; Huang H; Liu T; Marina RJ; Jung I; Shen Y; Guan KL; Ren B Nat Methods; 2017 Jun; 14(6):629-635. PubMed ID: 28417999 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide maps of distal gene regulatory enhancers active in the human placenta. Zhang J; Simonti CN; Capra JA PLoS One; 2018; 13(12):e0209611. PubMed ID: 30589856 [TBL] [Abstract][Full Text] [Related]
10. Non-coding transcription at cis-regulatory elements: computational and experimental approaches. Simonatto M; Barozzi I; Natoli G Methods; 2013 Sep; 63(1):66-75. PubMed ID: 23542771 [TBL] [Abstract][Full Text] [Related]
11. A map of the cis-regulatory sequences in the mouse genome. Shen Y; Yue F; McCleary DF; Ye Z; Edsall L; Kuan S; Wagner U; Dixon J; Lee L; Lobanenkov VV; Ren B Nature; 2012 Aug; 488(7409):116-20. PubMed ID: 22763441 [TBL] [Abstract][Full Text] [Related]
12. A primer on deep learning in genomics. Zou J; Huss M; Abid A; Mohammadi P; Torkamani A; Telenti A Nat Genet; 2019 Jan; 51(1):12-18. PubMed ID: 30478442 [TBL] [Abstract][Full Text] [Related]
13. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network. Zeng W; Wang Y; Jiang R Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408 [TBL] [Abstract][Full Text] [Related]
14. ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation. Umarov R; Li Y; Arakawa T; Takizawa S; Gao X; Arner E PLoS Comput Biol; 2021 Sep; 17(9):e1009376. PubMed ID: 34491989 [TBL] [Abstract][Full Text] [Related]
15. The impact of different negative training data on regulatory sequence predictions. Krützfeldt LM; Schubach M; Kircher M PLoS One; 2020; 15(12):e0237412. PubMed ID: 33259518 [TBL] [Abstract][Full Text] [Related]
16. Decoding cis-regulatory systems in ascidians. Kusakabe T Zoolog Sci; 2005 Feb; 22(2):129-46. PubMed ID: 15738634 [TBL] [Abstract][Full Text] [Related]
17. A predictive model for identifying mini-regulatory modules in the mouse genome. Yaragatti M; Sandler T; Ungar L Bioinformatics; 2009 Feb; 25(3):353-7. PubMed ID: 19052060 [TBL] [Abstract][Full Text] [Related]
18. A deep learning method for lincRNA detection using auto-encoder algorithm. Yu N; Yu Z; Pan Y BMC Bioinformatics; 2017 Dec; 18(Suppl 15):511. PubMed ID: 29244011 [TBL] [Abstract][Full Text] [Related]
19. Deciphering the regulatory syntax of genomic DNA with deep learning. Lal A J Biosci; 2022; 47():. PubMed ID: 36222139 [TBL] [Abstract][Full Text] [Related]
20. Integrative approaches based on genomic techniques in the functional studies on enhancers. Wang Q; Zhang J; Liu Z; Duan Y; Li C Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38048082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]