These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 29855818)
1. Development of a Simple Mechanical Screening Method for Predicting the Feedability of a Pharmaceutical FDM 3D Printing Filament. Nasereddin JM; Wellner N; Alhijjaj M; Belton P; Qi S Pharm Res; 2018 May; 35(8):151. PubMed ID: 29855818 [TBL] [Abstract][Full Text] [Related]
2. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS. Oladeji S; Mohylyuk V; Jones DS; Andrews GP Int J Pharm; 2022 Mar; 616():121553. PubMed ID: 35131354 [TBL] [Abstract][Full Text] [Related]
3. Development of a quantitative method to evaluate the printability of filaments for fused deposition modeling 3D printing. Xu P; Li J; Meda A; Osei-Yeboah F; Peterson ML; Repka M; Zhan X Int J Pharm; 2020 Oct; 588():119760. PubMed ID: 32800939 [TBL] [Abstract][Full Text] [Related]
4. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Korte C; Quodbach J Pharm Dev Technol; 2018 Dec; 23(10):1117-1127. PubMed ID: 29368974 [TBL] [Abstract][Full Text] [Related]
5. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Alhijjaj M; Belton P; Qi S Eur J Pharm Biopharm; 2016 Nov; 108():111-125. PubMed ID: 27594210 [TBL] [Abstract][Full Text] [Related]
6. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Melocchi A; Parietti F; Maroni A; Foppoli A; Gazzaniga A; Zema L Int J Pharm; 2016 Jul; 509(1-2):255-263. PubMed ID: 27215535 [TBL] [Abstract][Full Text] [Related]
7. Development of filaments for fused deposition modeling 3D printing with medical grade poly(lactic-co-glycolic acid) copolymers. Feuerbach T; Callau-Mendoza S; Thommes M Pharm Dev Technol; 2019 Apr; 24(4):487-493. PubMed ID: 30149761 [TBL] [Abstract][Full Text] [Related]
8. A Low-Cost Method to Prepare Biocompatible Filaments with Enhanced Physico-Mechanical Properties for FDM 3D Printing. Tan DK; Münzenrieder N; Maniruzzaman M; Nokhodchi A Curr Drug Deliv; 2021; 18(6):700-711. PubMed ID: 33155909 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of fused deposition modeling 3D printers for pharmaceutical and medical applications. Feuerbach T; Kock S; Thommes M Pharm Dev Technol; 2018 Dec; 23(10):1136-1145. PubMed ID: 29938558 [TBL] [Abstract][Full Text] [Related]
10. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Kollamaram G; Croker DM; Walker GM; Goyanes A; Basit AW; Gaisford S Int J Pharm; 2018 Jul; 545(1-2):144-152. PubMed ID: 29705104 [TBL] [Abstract][Full Text] [Related]
11. Preparation and characterization of hot-melt extruded polycaprolactone-based filaments intended for 3D-printing of tablets. Viidik L; Vesala J; Laitinen R; Korhonen O; Ketolainen J; Aruväli J; Kirsimäe K; Kogermann K; Heinämäki J; Laidmäe I; Ervasti T Eur J Pharm Sci; 2021 Mar; 158():105619. PubMed ID: 33115676 [TBL] [Abstract][Full Text] [Related]
12. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Sadia M; Sośnicka A; Arafat B; Isreb A; Ahmed W; Kelarakis A; Alhnan MA Int J Pharm; 2016 Nov; 513(1-2):659-668. PubMed ID: 27640246 [TBL] [Abstract][Full Text] [Related]
13. An Effective Technology for the Development of Immediate Release Solid Dosage Forms Containing Low-Dose Drug: Fused Deposition Modeling 3D Printing. Gültekin HE; Tort S; Acartürk F Pharm Res; 2019 Jun; 36(9):128. PubMed ID: 31250313 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredients. Gioumouxouzis CI; Tzimtzimis E; Katsamenis OL; Dourou A; Markopoulou C; Bouropoulos N; Tzetzis D; Fatouros DG Eur J Pharm Sci; 2020 Feb; 143():105176. PubMed ID: 31809907 [TBL] [Abstract][Full Text] [Related]
15. Investigation on hot melt extrusion and prediction on 3D printability of pharmaceutical grade polymers. Tabriz AG; Scoutaris N; Gong Y; Hui HW; Kumar S; Douroumis D Int J Pharm; 2021 Jul; 604():120755. PubMed ID: 34052338 [TBL] [Abstract][Full Text] [Related]
16. Personalised 3D Printed Medicines: Optimising Material Properties for Successful Passive Diffusion Loading of Filaments for Fused Deposition Modelling of Solid Dosage Forms. Cerda JR; Arifi T; Ayyoubi S; Knief P; Ballesteros MP; Keeble W; Barbu E; Healy AM; Lalatsa A; Serrano DR Pharmaceutics; 2020 Apr; 12(4):. PubMed ID: 32290400 [TBL] [Abstract][Full Text] [Related]
19. The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: Material considerations-printability-process modulation, with consecutive effects on in vitro release, stability and degradation. Ilyés K; Kovács NK; Balogh A; Borbás E; Farkas B; Casian T; Marosi G; Tomuță I; Nagy ZK Eur J Pharm Sci; 2019 Mar; 129():110-123. PubMed ID: 30610954 [TBL] [Abstract][Full Text] [Related]
20. 3D printed oral theophylline doses with innovative 'radiator-like' design: Impact of polyethylene oxide (PEO) molecular weight. Isreb A; Baj K; Wojsz M; Isreb M; Peak M; Alhnan MA Int J Pharm; 2019 Jun; 564():98-105. PubMed ID: 30974194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]