These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 2985590)

  • 1. Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase.
    Tsunasawa S; Stewart JW; Sherman F
    J Biol Chem; 1985 May; 260(9):5382-91. PubMed ID: 2985590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation.
    Moerschell RP; Hosokawa Y; Tsunasawa S; Sherman F
    J Biol Chem; 1990 Nov; 265(32):19638-43. PubMed ID: 2174047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast methionine aminopeptidase I. Alteration of substrate specificity by site-directed mutagenesis.
    Walker KW; Bradshaw RA
    J Biol Chem; 1999 May; 274(19):13403-9. PubMed ID: 10224104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae.
    Polevoda B; Norbeck J; Takakura H; Blomberg A; Sherman F
    EMBO J; 1999 Nov; 18(21):6155-68. PubMed ID: 10545125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid replacements in yeast iso-1-cytochrome c. Comparison with the phylogenetic series and the tertiary structure of related cytochromes c.
    Hampsey DM; Das G; Sherman F
    J Biol Chem; 1986 Mar; 261(7):3259-71. PubMed ID: 3005287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of methionine Nalpha-acetyltransferase from Saccharomyces cerevisiae.
    Lee FJ; Lin LW; Smith JA
    J Biol Chem; 1990 Mar; 265(7):3603-6. PubMed ID: 2406257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases.
    Li X; Chang YH
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12357-61. PubMed ID: 8618900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dramatic thermostabilization of yeast iso-1-cytochrome c by an asparagine----isoleucine replacement at position 57.
    Das G; Hickey DR; McLendon D; McLendon G; Sherman F
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):496-9. PubMed ID: 2536164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of a methionine aminopeptidase from Saccharomyces cerevisiae.
    Chang YH; Teichert U; Smith JA
    J Biol Chem; 1990 Nov; 265(32):19892-7. PubMed ID: 2246265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of the methionine aminopeptidase from porcine liver responsible for the co-translational processing of proteins.
    Kendall RL; Bradshaw RA
    J Biol Chem; 1992 Oct; 267(29):20667-73. PubMed ID: 1328207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAT2, an essential gene encoding methionine N alpha-acetyltransferase in the yeast Saccharomyces cerevisiae.
    Kulkarni MS; Sherman F
    J Biol Chem; 1994 May; 269(18):13141-7. PubMed ID: 8175741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast.
    Mullen JR; Kayne PS; Moerschell RP; Tsunasawa S; Gribskov M; Colavito-Shepanski M; Grunstein M; Sherman F; Sternglanz R
    EMBO J; 1989 Jul; 8(7):2067-75. PubMed ID: 2551674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of yeast with synthetic oligonucleotides.
    Moerschell RP; Tsunasawa S; Sherman F
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):524-8. PubMed ID: 2829192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat liver polysome N alpha-acetyltransferase: substrate specificity.
    Yamada R; Bradshaw RA
    Biochemistry; 1991 Jan; 30(4):1017-21. PubMed ID: 1846556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of cotranslational amino-terminal processing of proteins in yeast.
    Huang S; Elliott RC; Liu PS; Koduri RK; Weickmann JL; Lee JH; Blair LC; Ghosh-Dastidar P; Bradshaw RA; Bryan KM
    Biochemistry; 1987 Dec; 26(25):8242-6. PubMed ID: 3327521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitin conjugation to cytochromes c. Structure of the yeast iso-1 conjugate and possible recognition determinants.
    Sokolik CW; Cohen RE
    J Biol Chem; 1992 Jan; 267(2):1067-71. PubMed ID: 1309759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dominant negative mutation in Saccharomyces cerevisiae methionine aminopeptidase-1 affects catalysis and interferes with the function of methionine aminopeptidase-2.
    Klinkenberg M; Ling C; Chang YH
    Arch Biochem Biophys; 1997 Nov; 347(2):193-200. PubMed ID: 9367524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletions and replacements of omega loops in yeast iso-1-cytochrome c.
    Fetrow JS; Cardillo TS; Sherman F
    Proteins; 1989; 6(4):372-81. PubMed ID: 2560195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacement of the invariant lysine 77 by arginine in yeast iso-1-cytochrome c results in enhanced and normal activities in vitro and in vivo.
    Holzschu D; Principio L; Conklin KT; Hickey DR; Short J; Rao R; McLendon G; Sherman F
    J Biol Chem; 1987 May; 262(15):7125-31. PubMed ID: 3034882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.