These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29856050)

  • 21. Shotgun Proteomics Analysis of Estrogen Effects in the Uterus Using Two-Dimensional Liquid Chromatography and Tandem Mass Spectrometry.
    Callegari EA
    Methods Mol Biol; 2016; 1366():131-148. PubMed ID: 26585132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of peptide retention time in proteomic data analysis.
    Shao C
    Adv Exp Med Biol; 2015; 845():67-75. PubMed ID: 25355570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration.
    Bharadwaj R; Wong A; Knierim B; Singh S; Holmes BM; Auer M; Simmons BA; Adams PD; Singh AK
    Bioresour Technol; 2011 Jan; 102(2):1329-37. PubMed ID: 20884206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification.
    Wanmolee W; Sornlake W; Rattanaphan N; Suwannarangsee S; Laosiripojana N; Champreda V
    BMC Biotechnol; 2016 Nov; 16(1):82. PubMed ID: 27871321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Factors Produced and Secreted by Mesenchymal Stromal Cells with the SILAC Method.
    Rocha B; Calamia V; Blanco FJ; Ruiz-Romero C
    Methods Mol Biol; 2016; 1416():551-65. PubMed ID: 27236695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical Proteomics: Liquid Chromatography-Mass Spectrometry (LC-MS) Purification Systems.
    Henry M; Meleady P
    Methods Mol Biol; 2017; 1485():375-388. PubMed ID: 27730564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass.
    Adav SS; Ravindran A; Sze SK
    J Proteomics; 2012 Feb; 75(5):1493-504. PubMed ID: 22146477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of Novel Cellulases Using Proteomic Strategies.
    Zoglowek M; Brewer H; Norbeck A
    Methods Mol Biol; 2018; 1796():103-113. PubMed ID: 29856049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving the remaining activity of lignocellulolytic enzymes by membrane entrapment.
    Chang KL; Thitikorn-amorn J; Chen SH; Hsieh JF; Ratanakhanokchai K; Huang PJ; Lin TC; Chen ST
    Bioresour Technol; 2011 Jan; 102(2):519-23. PubMed ID: 20952190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions.
    Sharma D; Garlapat VK; Goel G
    Bioengineered; 2016 Apr; 7(2):88-97. PubMed ID: 26941214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase.
    Kim IJ; Lee HJ; Choi IG; Kim KH
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8469-80. PubMed ID: 25129610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse.
    Manavalan T; Manavalan A; Thangavelu KP; Heese K
    J Proteomics; 2012 Dec; 77():298-309. PubMed ID: 23000217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mediterranean agro-industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solid-state fermentation.
    Sousa D; VenĂ¢ncio A; Belo I; Salgado JM
    J Sci Food Agric; 2018 Nov; 98(14):5248-5256. PubMed ID: 29652435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and Preparation of Extracellular Proteins from Lignocellulose Degrading Fungi for Comparative Proteomic Studies Using Mass Spectrometry.
    Gruninger RJ; Tsang A; McAllister TA
    Methods Mol Biol; 2017; 1588():299-308. PubMed ID: 28417377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic analysis by multidimensional protein identification technology.
    Florens L; Washburn MP
    Methods Mol Biol; 2006; 328():159-75. PubMed ID: 16785648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative evaluation of lignocellulolytic activities of filamentous cultures of monocentric and polycentric anaerobic fungi.
    Dagar SS; Kumar S; Mudgil P; Puniya AK
    Anaerobe; 2018 Apr; 50():76-79. PubMed ID: 29454109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical proteomics: current status, challenges, and future perspectives.
    Chiou SH; Wu CY
    Kaohsiung J Med Sci; 2011 Jan; 27(1):1-14. PubMed ID: 21329886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.
    Sun FF; Hong J; Hu J; Saddler JN; Fang X; Zhang Z; Shen S
    Enzyme Microb Technol; 2015 Nov; 79-80():42-8. PubMed ID: 26320713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulase activities in biomass conversion: measurement methods and comparison.
    Dashtban M; Maki M; Leung KT; Mao C; Qin W
    Crit Rev Biotechnol; 2010 Dec; 30(4):302-9. PubMed ID: 20868219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.