BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 29856057)

  • 1. Analytical Tools for Characterizing Cellulose-Active Lytic Polysaccharide Monooxygenases (LPMOs).
    Westereng B; Loose JSM; Vaaje-Kolstad G; Aachmann FL; Sørlie M; Eijsink VGH
    Methods Mol Biol; 2018; 1796():219-246. PubMed ID: 29856057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry.
    Westereng B; Arntzen MØ; Agger JW; Vaaje-Kolstad G; Eijsink VGH
    Methods Mol Biol; 2017; 1588():71-92. PubMed ID: 28417362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry.
    Westereng B; Arntzen MØ; Østby H; Agger JW; Vaaje-Kolstad G; Eijsink VGH
    Methods Mol Biol; 2023; 2657():27-51. PubMed ID: 37149521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose.
    Westereng B; Arntzen MØ; Aachmann FL; Várnai A; Eijsink VG; Agger JW
    J Chromatogr A; 2016 May; 1445():46-54. PubMed ID: 27059395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases.
    Westereng B; Agger JW; Horn SJ; Vaaje-Kolstad G; Aachmann FL; Stenstrøm YH; Eijsink VG
    J Chromatogr A; 2013 Jan; 1271(1):144-52. PubMed ID: 23246088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition.
    Liu B; Kognole AA; Wu M; Westereng B; Crowley MF; Kim S; Dimarogona M; Payne CM; Sandgren M
    FEBS J; 2018 Jun; 285(12):2225-2242. PubMed ID: 29660793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple enzymatic assay for the quantification of C1-specific cellulose oxidation by lytic polysaccharide monooxygenases.
    Keller MB; Felby C; Labate CA; Pellegrini VOA; Higasi P; Singh RK; Polikarpov I; Blossom BM
    Biotechnol Lett; 2020 Jan; 42(1):93-102. PubMed ID: 31745843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.
    Forsberg Z; Mackenzie AK; Sørlie M; Røhr ÅK; Helland R; Arvai AS; Vaaje-Kolstad G; Eijsink VG
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8446-51. PubMed ID: 24912171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.
    Isaksen T; Westereng B; Aachmann FL; Agger JW; Kracher D; Kittl R; Ludwig R; Haltrich D; Eijsink VG; Horn SJ
    J Biol Chem; 2014 Jan; 289(5):2632-42. PubMed ID: 24324265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere.
    Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C
    FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs).
    Kont R; Bissaro B; Eijsink VGH; Väljamäe P
    Nat Commun; 2020 Nov; 11(1):5786. PubMed ID: 33188177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.
    Pierce BC; Agger JW; Zhang Z; Wichmann J; Meyer AS
    Carbohydr Res; 2017 Sep; 449():85-94. PubMed ID: 28750348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering lytic polysaccharide monooxygenases (LPMOs).
    Forsberg Z; Stepnov AA; Nærdal GK; Klinkenberg G; Eijsink VGH
    Methods Enzymol; 2020; 644():1-34. PubMed ID: 32943141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in
    Adnan M; Ma X; Xie Y; Waheed A; Liu G
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.
    Pierce BC; Agger JW; Wichmann J; Meyer AS
    Enzyme Microb Technol; 2017 Mar; 98():58-66. PubMed ID: 28110665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselective C4 and C6 Double Oxidation of Cellulose by Lytic Polysaccharide Monooxygenases.
    Sun P; Laurent CVFP; Boerkamp VJP; van Erven G; Ludwig R; van Berkel WJH; Kabel MA
    ChemSusChem; 2022 Jan; 15(2):e202102203. PubMed ID: 34859958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.