These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29856263)

  • 1. Differential effects of vitamin C or protandim on skeletal muscle adaptation to exercise.
    Bruns DR; Ehrlicher SE; Khademi S; Biela LM; Peelor FF; Miller BF; Hamilton KL
    J Appl Physiol (1985); 2018 Aug; 125(2):661-671. PubMed ID: 29856263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats.
    Kim JC; Park GD; Kim SH
    J Nutr Sci Vitaminol (Tokyo); 2017; 63(5):277-283. PubMed ID: 29225311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-dose antioxidant vitamin C supplementation does not prevent acute exercise-induced increases in markers of skeletal muscle mitochondrial biogenesis in rats.
    Wadley GD; McConell GK
    J Appl Physiol (1985); 2010 Jun; 108(6):1719-26. PubMed ID: 20395544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise.
    Mankowski RT; Anton SD; Buford TW; Leeuwenburgh C
    Med Sci Sports Exerc; 2015 Sep; 47(9):1857-68. PubMed ID: 25606815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training.
    Theodorou AA; Nikolaidis MG; Paschalis V; Koutsias S; Panayiotou G; Fatouros IG; Koutedakis Y; Jamurtas AZ
    Am J Clin Nutr; 2011 Jun; 93(6):1373-83. PubMed ID: 21508092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice.
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5195-207. PubMed ID: 27094017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance.
    Gomez-Cabrera MC; Domenech E; Romagnoli M; Arduini A; Borras C; Pallardo FV; Sastre J; Viña J
    Am J Clin Nutr; 2008 Jan; 87(1):142-9. PubMed ID: 18175748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal adaptations to exercise despite protection against oxidative stress.
    Higashida K; Kim SH; Higuchi M; Holloszy JO; Han DH
    Am J Physiol Endocrinol Metab; 2011 Nov; 301(5):E779-84. PubMed ID: 21750271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats.
    Picklo MJ; Thyfault JP
    Appl Physiol Nutr Metab; 2015 Apr; 40(4):343-52. PubMed ID: 25761734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Undaria pinnatifida extract feeding increases exercise endurance and skeletal muscle mass by promoting oxidative muscle remodeling in mice.
    Ahn J; Ha TY; Ahn J; Jung CH; Seo HD; Kim MJ; Kim YS; Jang YJ
    FASEB J; 2020 Jun; 34(6):8068-8081. PubMed ID: 32293073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin E supplementation modifies adaptive responses to training in rat skeletal muscle.
    Venditti P; Napolitano G; Barone D; Di Meo S
    Free Radic Res; 2014 Oct; 48(10):1179-89. PubMed ID: 24957207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle.
    Wang P; Li CG; Qi Z; Cui D; Ding S
    Exp Physiol; 2016 Mar; 101(3):410-20. PubMed ID: 26682532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis.
    Margolis LM; Pasiakos SM
    Adv Nutr; 2013 Nov; 4(6):657-64. PubMed ID: 24228194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
    Cobley JN; McHardy H; Morton JP; Nikolaidis MG; Close GL
    Free Radic Biol Med; 2015 Jul; 84():65-76. PubMed ID: 25841784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Nrf2 activators on subcellular skeletal muscle protein and DNA synthesis rates after 6 weeks of milk protein feeding in older adults.
    Konopka AR; Laurin JL; Musci RV; Wolff CA; Reid JJ; Biela LM; Zhang Q; Peelor FF; Melby CL; Hamilton KL; Miller BF
    Geroscience; 2017 Apr; 39(2):175-186. PubMed ID: 28283797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis.
    Strobel NA; Peake JM; Matsumoto A; Marsh SA; Coombes JS; Wadley GD
    Med Sci Sports Exerc; 2011 Jun; 43(6):1017-24. PubMed ID: 21085043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Communication: Dietary selenium improves skeletal muscle mitochondrial biogenesis in young equine athletes.
    White SH; Wohlgemuth S; Li C; Warren LK
    J Anim Sci; 2017 Sep; 95(9):4078-4084. PubMed ID: 28992020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin E-enriched diet reduces adaptive responses to training determining respiratory capacity and redox homeostasis in rat heart.
    Venditti P; Napolitano G; Barone D; Pervito E; Di Meo S
    Free Radic Res; 2016; 50(1):56-67. PubMed ID: 26467971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5135-47. PubMed ID: 26638792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.